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Abstract

In this paper, we address the issue of cellular OFDMA networks dimension-

ing. Network design consists of evaluating cell coverage and capacity and

may involve many parameters related to environment, system configuration,

and quality of service (QoS) requirements. In order to quickly study the

impact of each of these parameters, analytical formulas are needed. The

key function for network dimensioning is the Signal to Interference Ratio

(SIR) distribution. We thus analyze in an original way the traditional issue

of deriving outage probabilities in OFDMA cellular networks. Our study

takes into account the joint effect of path-loss, shadowing, and fast fading

effects. Starting from the Mean Instantaneous Capacity (MIC), we derive the

effective SIR distribution as a function of the number of sub-carriers per sub-

channel. Our formula, based on a fluid model approach, is easily computable

and can be obtained for a mobile station (MS) located at any distance from

its serving base station (BS). We validate our approach by comparing all

results to Monte Carlo simulations performed in a hexagonal network, and
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we show how our analytical study can be used to analyze outage capacity,

coverage holes, and network densification. The proposed framework is a pow-

erful tool to study performances of cellular OFDMA networks (e.g. WiMAX,

LTE).

Key words: Cellular networks, OFDMA, SINR, Dimensioning, Cell

breathing, Network densification

1. Introduction

All cellular systems of the fourth generation will adopt Orthogonal Fre-

quency Division Multiple Access (OFDMA) as the basis for their multiple-

access scheme on the downlink. In OFDMA, the system bandwidth is sub-

divided into sub-carriers, which are grouped to form sub-channels. A sub-

channel is, in turn, the elementary frequency radio resource that can be

allocated to a user.

As WiMAX networks are being deployed and first experiments of Long

Term Evolution (LTE) are underway, the need arises for cellular operators to

get efficient dimensioning tools for OFDMA networks. The key function for

network design is the Signal to Interference plus Noise Ratio (SINR) distri-

bution. On the one hand, radio coverage is indeed defined as the probability

that SINR at cell edge is above a given threshold. On the other hand, capac-

ity and traffic studies in cellular networks very often rely on the Modulation

and Coding Scheme (MCS) probabilities, which can be directly derived from

the SINR Cumulative Distribution Function (CDF), or, alternatively on the

Shannon formula, which depends also on the SINR (see e.g. [16]).

In this paper, we address in an original way the traditional issue of de-
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riving outage probabilities in cellular networks. We focus on an urban envi-

ronment so that the SINR can be approximated by the Signal to Interference

Ratio (SIR). First, we propose a simple approximation of the SIR CDF on

a generic sub-carrier at any distance of the Base Station (BS), while taking

into account the joint effect of path-loss, shadowing and fast fading. Outage

probabilities can thus be obtained at a click speed with very good accuracy.

Then, we extend this approach to OFDMA networks, for which the notions of

Mean Instantaneous Capacity (MIC) and effective SIR have been introduced.

Effective SIR CDF is obtained as a function of the number of sub-carriers

per sub-channel.

The issue of expressing outage probability in cellular networks has been

extensively addressed in the literature. For such a study, there are often two

possible assumptions: (1) considering only the shadowing effect, (2) consid-

ering both shadowing and fast fading effects. In the former case, authors

mainly face the problem of expressing the distribution of the sum of log-

normally random variables; several classical methods can be applied to solve

this issue (see e.g. [12] [3]). In the latter case, formulas usually consist of

many infinite integrals, which are uneasy to handle in practice (see e.g. [13]).

In both cases, outage probability is expressed as an explicit function of the

distances between the user and all interferers. Such multivariate functions

are difficult to handle and to integrate in practice for dimensioning purposes.

As the need for easy-to-use formulas for outage probability is clear, ap-

proximations need to be done. Working on the uplink, [11] derived the dis-

tribution function of a ratio of received powers at the base-station by consid-

ering path-loss and shadowing; it is an essential result for the evaluation of
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external interference. For that, authors approximate the hexagonal cell with

a disk of same area. On the downlink, Chan and Hanly [9] precisely approx-

imate the distribution of the other-cell interference. They however provide

formulas that are difficult to handle in practice and do not consider fast fad-

ing. Immovilli and Merani [15] take into account the two channel effects and

make several assumptions in order to obtain simplified formulas. In particu-

lar, they approximate interference by its mean value. Outage probability is

however again expressed as an explicit function of the distances from receiver

to every interferer. Zorzi, in [17], proposes a simple formula but for packet

radio networks rather than for cellular systems. Reference [18] provides some

interesting characterizations and upper bounds of the outage probability but

neglects the slowly varying path-gains. In [19], authors consider both shad-

owing and fast fading but assume a single interferer.

In the context of OFDMA access, many papers deal with the resource

allocation problem on the downlink, which consists of allocating power and

sub-carriers to multiple users in order to maximize the cell sum rate (see

e.g. [27, 28]). Performance analysis assuming limited or erroneous feedback

channel has also received a lot of interest in recent years, see e.g. [25] and

references therein. Most of these papers, which often rely on the computation

of outage probabilities, however neglect inter-cell interference and focus on

Signal to Noise (SNR) variations. Two notable exceptions are references [26]

and [29]. The former considers only a two cell network. The latter derives

an expression of the SINR distribution conditionally on the average received

powers and rely on Monte Carlo simulations at cell edge to obtain the symbol

error rate.
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Concerning the dimensioning of OFDMA networks, many papers (e.g. [30])

are studying system performance based on simulations, which are more or less

following the instructions provided in methodology documents such as [22].

Few papers are dealing with analytical approaches. Although [20] studies

outage probability as a function of the system load, whereas we are consider-

ing only a fully loaded system, the proposed analytical expression explicitly

depends on all distances to interferers. A paper close in its objectives to our

work is [21]. A simple planning procedure is proposed based on the eval-

uation of two averages of the SINR. Effective SINR is approximated by a

Gaussian random variable (RV). The limitation of this study lies in the fact

that the two involved averages are computed by simulations and have to be

obtained for each user location.

In order to calculate the SIR distribution, while taking into account shad-

owing, we approximate a sum of log-normal RV by a log-normal RV using

the Fenton-Wilkinson method. Then, we jointly take into account shadowing

and fast fading and derive an outage probability formula, for a mobile located

at any distance from its serving BS. At last, we rely on a recently proposed

fluid model [5] in order to express the outage probability as a function of the

distance to the serving BS. Such an expression allows further integrations

much more easily than with existing formulas. We then extend this result

to OFDMA networks by approximating the effective SIR by a log-normal

RV, whose parameters can be easily computed. Our approach is validated

by Monte Carlo simulations.

The fluid model has been originally proposed in [5]. It has been shown in

[6] how this model can be efficiently used for admission control. In [7] and
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[8], we have used the fluid model in order to compute outage probability and

spatial outage probability in CDMA cellular networks for a simple propaga-

tion model only based on path-loss. In this paper, we extend this work by

adapting the model to OFDMA networks and by considering shadowing and

fast fading.

In the next section, we introduce the interference and network model and

give the SIR definition. In Section 3, we derive outage probability for multi-

carrier systems. We first present the MIC approach, then derive the SIR CDF

on a generic sub-carrier and at last derive the effective SIR distribution. We

also apply in this section the fluid model in order to obtain an interference

factor needed to compute SIR CDFs. Our analytical approach is validated by

Monte Carlo simulations in Section 4. An example of dimensioning involving

a streaming service is given in Section 5: studies of the outage capacity,

coverage holes and network densification are performed with our formulas.

At last, Section 6 concludes the paper.

2. Signal to Interference Ratio and Outage Definitions

We consider a homogeneous cellular network and focus on a mobile station

(MS) u and its serving base station (BS), BS0, surrounded by N interfering

BS. We describe in this section the interference models used in this paper.

On the downlink, the power received by MS u can be described by the

three stage propagation model that considers path-loss, shadowing effect,

and fast fading. Let Pj be the transmission power of BS j, the power pj,u

received by u can thus be written as:

pj,u = PjKr−η
j,uXj,uYj,u. (1)
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The path-loss model is characterized by parameters K and η > 2 (typ-

ically between 3 and 4 in dense urban environments). The term PjKr−η
j,u is

the mean value of the received power at distance rj,u from the transmitter

BSj.

Shadowing effect is represented by random variable Yj,u = 10
ξj,u

10 , where

ξj,u is a normal RV, with zero mean and standard deviation σ, typically

ranging from 3 to 10 dB.

RV Xj,u is representing the Rayleigh fast fading effects, its PDF is given

by pX(x) = e−x. In the rest of this paper, we assume that RV {Xj,u}j=0,...,N

and {ξj,u}j=0,...,N are i.i.d.

For the sake of simplicity, we now drop index u and set r0,u = r. Con-

sidering the useful power P0 transmitted by the BS0, the useful power p0

received by MS u belonging to BS0 can be written as:

p0 = P0Kr−ηY0X0. (2)

Interference received by u coming from all the other BS of the network is

expressed as:

pext =
N
∑

j=1

PjKr−η
j YjXj. (3)

The SINR at user u is thus given by:

γ =
P0Kr−ηY0X0

∑N
j=1 PjKr−η

j YjXj + Nth

, (4)

where Nth is the thermal noise power. In dense urban environments, thermal

noise can be neglected with respect to the co-channel interference. If we

further assume that BS have identical transmitting powers, P0, the SIR, γ
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can now be written as:

γ =
r−ηX0Y0

∑N
j=1 r−η

j XjYj

. (5)

The outage probability is now defined as the probability for the SIR γ to be

lower than a threshold value δ:P(γ < δ
)

= 1 − P(p0 > δpext

)

. (6)

Note that, assuming negligible noise and equal BS transmit powers, P0 and

K vanish in the outage probability expression.

3. Multi-Carrier Outage Probability

In this section, we derive an approximate formula for the outage proba-

bility of multi-carrier systems. The computation is based on the notion of

Mean Instantaneous Capacity (MIC) introduced in the next section. As we

then rely on the Gaussian approximation, the SIR distribution on a single

carrier is needed. At last, we use the fluid model in order to obtain a simple

expression of the outage probability.

3.1. Mean Instantaneous Capacity

With OFDMA, system bandwidth is made of hundreds of orthogonal nar-

row band sub-carriers. For example, in a 20 MHz IEEE 802.16 system, there

are 2048 sub-carriers of about 11 kHz; out of them, NT
sc = 1536 can be used

for data transfer in FUSC (Full Usage of Sub Carriers) mode [23]. Because of

complexity and excessive protocol overhead that it would imply, sub-carriers

cannot be individually allocated to users. They are rather grouped into sub-

channels and sub-channels are allocated to users. Let Nsc be the number of

sub-carriers per sub-channel (e.g. Nsc = 48 in FUSC mode in the downlink).
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As allocation is done on a sub-channel basis, quality of the signal is also

evaluated per sub-channel rather than per sub-carrier. This evaluation helps

the transmitter to choose the right modulation and coding scheme for link

adaptation and allows the receiver to feedback an aggregated quality in-

dicator to the transmitter. One such aggregated method is called Mean

Instantaneous Capacity and is defined as [22]:

MIC =
1

Nsc

Nsc
∑

n=1

Cn, (7)

where Cn = log2(1 + γn) is the spectral efficiency in bps/Hz on sub-carrier

n and γn is the SIR on sub-carrier n. From MIC, it is possible to define the

effective SIR:

SIReff = 2MIC − 1. (8)

The effective SIR is an aggregated measure of the channel quality on a given

sub-channel.

In a multi-carrier system, we define the outage probability as the proba-

bility that the effective SIR falls below a given threshold δ, P(SIReff < δ
)

.

As Nsc is typically greater than 10, it is clear that the RV MIC can be ap-

proximated by a normally distributed RV. As a consequence, the distribution

of Cn and thus of γn (the SIR on a generic single carrier) are needed in order

to compute the first and second moment of the MIC.

Remark 1: Expression of Cn reflects the spectral efficiency formula for

an AWGN (Average White Gaussian Noise) channel. Shannon capacity of

channels with interference is an open problem in information theory (see

chapter 15 of [31]). The approximation log(1 + γ) is however often used

in system performance evaluation literature (assuming a worst-case for the
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interference distribution, i.e., Gaussian).

3.2. Single Carrier Study

In this section, we focus on a single generic sub-carrier. Using Eq. 2, 3,

and 6, the SIR CDF is expressed as:P(γ < δ
)

= 1 − P[r−ηX0Y0 > δ

N
∑

j=1

r−η
j XjYj

]

. (9)

We now make the simple approximation consisting of replacing RV {Xj}j 6=0

by their average values E[Xj] = 1 for the interfering signals. We also intro-

duced an intermediate RV Yf :

Yf =

N
∑

j=1

r−η
j Yj

r−ηY0

. (10)

The CDF can now be expressed as:P(γ < δ
)

= 1 − P(X0Y0 >
δ

r−η

N
∑

j=1

r−η
j Yj

)

,

= 1 − P(X0 > δYf

)

,

= 1 −
∫ ∞

0

P(x > δYf

)

pX(x)dx,

=

∫ ∞

0

[

1 − P(x

δ
> Yf

)]

pX(x)dx. (11)

The factor Yf is defined for any mobile u and is location dependent. The

numerator of this factor is a sum of log-normally distributed RV, which can

be approximated by a log-normally distributed RV [3]. The denominator of

the factor is a log-normally distributed RV. Yf can thus be approximated by

a log-normal RV.
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Using the Fenton-Wilkinson approximation [1], we can calculate the mean

and standard deviation, mf and sf , of factor Yf , for any mobile at distance

r from its serving BS (see A).

mf =
1

a
ln(yf(r, η)H(r, σ)), (12)

s2
f = 2(σ2 − 1

a2
ln H(r, σ)), (13)

where a = ln 10
10

and

H(r, σ) = ea2σ2/2
(

G(r, η)(ea2σ2 − 1) + 1
)− 1

2

, (14)

G(r, η) =

∑

j 6=0 r−2η
j

(

∑

j 6=0 r−η
j

)2 , (15)

yf(r, η) =

∑

j 6=0 r−η
j

r−η
. (16)

We also notice that the G factor can be rewritten as a function of yf :

G(r, η) =
yf(r, 2η)

yf(r, η)2 . (17)

As a consequence, the single-carrier SIR CDF for a mobile located at

a distance r from its serving BS, taking into account the joint effect of

shadowing and fast fading can be written, using Eq. 11, as:P(γ < δ
)

=

∫ ∞

0

[

1 − P(10 log10(
x

δ
) > 10 log10(Yf)

)]

pX(x)dx,

=

∫ ∞

0

Q

[

10 log10(
x
δ
) − mf

sf

]

e−xdx, (18)

where Q is the error function: Q(u) = 1
2
erfc( u√

2
). Eq. 18 represents also the

outage probability on a single-carrier.
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Remark 2: If we consider only the shadowing effect, the single-carrier

outage probability can be written as:P (γ < δ) = 1 − P(1

δ
> Yf(mf , sf)

)

,

= 1 − P(10 log10(
1

δ
) > 10 log10(Yf)

)

,

= Q

[

10 log10(
1
δ
) − mf

sf

]

. (19)

Remark 3: In Eq. 11, we neglect the variations of the Rayleigh fading for

interferers and replace the associated exponential random variables (RV) by

their first moment. Another method would be to consider the joint distri-

bution of all RV involved in the interference sum. This approach is much

more complex in terms of numerical computation since it would involve N

infinite integrals. Although the sum of independent exponential RV has a

known distribution (Erlang), the presence of shadowing does not allow to

have a closed-form distribution. Another alternative would be to use a gaus-

sian approximation for the entire interference term, but results are much less

accurate because RV are positive. In Section 4, we compare the proposed

approach with Monte Carlo simulations and show that the approximation is

accurate.

We can now come back to the computation of the MIC distribution.

3.3. MIC Distribution

Using the Gaussian approximation, we need to compute the mean µMIC

and the standard deviation σMIC of the RV MIC (this approach is also used

in [24]). These parameters are obtained from order 1 and 2 moments of Cn.
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Using Eq. 18, we can write:

E[Cn] =

∫ ∞

0

P(Cn > t)dt,

=

∫ ∞

0

(

1 − P(γn < 2t − 1)
)

dt,

=

∫ ∞

0

∫ ∞

0

(1 − Qf (x, t)) e−xdxdt, (20)

with

Qf (x, t) = Q

[

10 log10(
x

2t−1
) − mf

sf

]

. (21)

In the same way:

E[C2
n] =

∫ ∞

0

2tP(Cn > t)dt,

=

∫ ∞

0

∫ ∞

0

2t (1 − Qf (x, t)) e−xdxdt. (22)

Note that we used here the classical formula for positive RV X and p ∈ N∗:

E[Xp] =

∫ ∞

0

ptp−1P(X > t)dt.

We have indeed from X =
∫∞
0
1{t<X}dt:

E[X] = E[

∫ ∞

0

1{t<X}dt] =

∫ ∞

0

E(1{t<X})dt =

∫ ∞

0

P(X > t)dt.

We obtain the result for p > 1 by considering the variable transformation

t = sp.

Mean and standard deviation of the MIC are thus given by:

µMIC = E[Cn], (23)

σ2
MIC =

1

Nsc
(E[C2

n] − E[Cn]2). (24)
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Note that we assumed here that RV Cn are independent. This is a reasonable

assumption if we assume that sub-carriers of a sub-channel are uniformly

chosen over the system bandwidth, as it is done in diversity modes (PUSC

and FUSC in IEEE 802.16 [23]).

Recall that µMIC and σMIC depend on the MS distance to its serving BS,

r, as mf and sf (Eq. 12 and 13).

3.4. Outage Probability

From the MIC distribution, we can now easily deduce the multi-carrier

outage probability for a mobile at distance r:P(SIReff < δ) = P(MIC < log2(1 + δ)),

= 1 − Q

[

log2(1 + δ) − µMIC

σMIC

]

. (25)

If the effective SIR and the threshold are expressed in dB, we have the fol-

lowing expression:P(SIReff,dB < δdB) = P(SIReff < 10δdB/10),

= 1 − Q

[

log2(1 + 10δdB/10) − µMIC

σMIC

]

. (26)

The location r of mobile u is taken into account in the mean (Eq. 23) and

standard deviation (Eq. 24) of the MIC, in the expression of Qf (Eq. 21),

and finally through mf (Eq. 12) and sf (Eq. 13). As mf , sf , H and G all

depend on parameter yf (Eq. 16), we propose in the next section to use the

fluid model in order to compute yf as a function of r.



15

3.5. Analytical Fluid Model

In this section, we recall results obtained in [5] for the fluid model. In B,

we present the main computation steps and we adapt the notations to the

system model presented in this paper. According to the fluid model and

assuming that the network is large, yf can be approximated by:

yf(r, η) =
2πρBSrη

η − 2
(2Rc − r)2−η, (27)

where Rc is the half distance between two BS and ρBS is the BS density.

This closed-form formula allows us to fastly compute functions G and H ,

parameters mf and sf , MIC mean and standard deviation µMIC and σMIC ,

and thus the outage probability for multi-carrier systems.

4. Validation

In this section, we compare the figures obtained with analytical expres-

sions to those obtained by Monte Carlo simulations in a hexagonal network.

We also validate our approximations and show the limitation of our formulas.

4.1. Monte Carlo Simulator

The simulator assumes a homogeneous hexagonal network made of 15

rings around a central cell. Fig. 1 shows an example of such a network with

the main parameters involved in the study: R, the cell range (1 km), Rc, the

half-distance between BS, and Rnw, the network size. A reuse 1 network is

assumed: all cells use the whole system bandwidth.

For the single-carrier case, the simulation consists of computing at each

snapshot the SIR according to Eq. 5 for a uniformly drawn point u of the
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Figure 1: Hexagonal network and main parameters of the study.

central cell. Eq. 5 takes into account path-loss, shadowing and fast fading

for the useful signal and for interfering signals. We explicitly compute the

distances between user u and all interfering BS.

This computation can be done independently of the number of MS in the

cell and of the BS output power (because thermal noise is supposed to be

negligible both in simulations and analytical study, and because all BS use

the same output power). At each snapshot, shadowing and fast fading RV

are independently drawn between the MS and the serving BS and between

MS and interfering BS.

For the multi-carrier case, the previous computation is repeated Nsc times

in order to obtain the γn figures. Then, effective SIR is computed using Eq. 8.

SIR (single-carrier) or effective SIR (multi-carrier) samples at a given

distance from the central BS are recorded in order to compute the outage

probability at a given distance r.
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Figure 2: SIR vs. distance to the BS; comparison of the fluid model with simulations on

a hexagonal network with η = 3, 3.5 and 4.

4.2. Validation of the Fluid Model

In this section, we validate the fluid model with Monte Carlo simulations.

While reference [7] was focusing on the other-cell interference factor, we focus

here on the SIR. To calculate γ, we use the fluid model network approach.

Fig. 2 compares the SIR values given by the fluid model (solid lines), using

Eq. 51 to the values of SIR obtained by Monte Carlo simulations (circles)

in the hexagonal network. Since η generally ranges from 3 to 4, we present

curves for η = 3, η = 3.5 and η = 4. We observe that the two methods

provide very close values. The fluid model approach is thus a solid basis for

outage probability analysis.

4.3. Single-Carrier Outage Probability

In this section, we validate our outage probability formula (Eq. 18) and

compare it to the simulation results obtained in a hexagonal network.
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Figure 3: Outage probability for a mobile located at cell edge (r = Rc); comparison

between analysis (solid curves) and simulations (dotted curves) on a hexagonal network

(η = 3); zoom on the right.

Fig. 3 gives an example of the kind of results we are able to obtain in-

stantaneously. These curves represent the outage probability for a mobile

located at the cell edge (r = Rc) for path-loss exponent η = 3, and for two

values of σ (3 dB and 6 dB). As an example of interpretation on Fig. 3, for

a SIR threshold of δ = −15 dB and a standard deviation of the shadowing

of σ = 3 dB, outage probability is 8 % for a mobile located at the cell edge.

We observe that the analytical study provides very good results compared

to Monte Carlo simulations, even for low outage probabilities.

Fig. 4 shows the impact of fast fading on the outage probability. The

curve with dots takes into account only the shadowing effect (Eq 19), while

the curve with crosses considers both shadowing and fast fading impacts
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Figure 4: Impact of fast fading on the outage probability for a mobile located at cell edge

(r = Rc, η = 3, σ = 3 dB), dotted curves are obtained with simulations solid ones with

analysis.

(Eq 18). Solid curves are obtained with analytical formulas. At 10 % of

outage, there is a 7 dB difference between two curves. This illustrates the

importance of considering fast fading in dimensioning processes.

4.4. Multi-Carrier Outage Probability

We now consider the multi-carrier case. Fig. 5 and 6 show the outage

probability at cell edge (r = Rc) and inside the cell (r = Rc/2), resp. for σ =

3 dB and 6 dB. In all cases, the difference between analysis and simulation

results in a hexagonal network is less than 0.5 dB. This accuracy confirms

that the gaussian approximation considered in Section 3.3 is efficient for

dimensioning purposes.

Fig. 7 shows the SIR threshold obtained at 2% outage, inside the cell (r =

Rc/2), with single and multi-carrier systems, as a function of the shadowing

standard deviation. Analysis and simulation are compared: in all cases and



20

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ [dB]

O
ut

ag
e 

pr
ob

ab
ili

ty

 

 

analysis

simulation

−10 −5 0 5 10
10

−3

10
−2

10
−1

10
0

δ [dB]

 

 

r = R
c

r = R
c

r = R
c
/2

r = R
c
/2

Figure 5: Outage probability at cell edge (r = Rc) and inside the cell (r = Rc/2); com-

parison between analysis (solid curves) and simulations (dotted curves) on a hexagonal

network (Nsc = 48, η = 3, σ = 3 dB).

in the considered interval, difference is less than 1 dB between analysis and

simulation. We clearly see the advantage of using multi-carrier instead of

single-carrier. For example, for σ = 4 dB, there is a 15 dB difference at 2%

outage for 48 sub-carriers. The gain is increasing with standard deviation

and with the number of sub-carriers per sub-channel.

5. Application to the Dimensioning of a Streaming Service

Our analytical framework allows us to analyze instantaneously the impact

of the various parameters involved in the dimensioning of cellular OFDMA

networks. This includes environment parameters (shadowing, fast fading,

path-loss exponent), network and system parameters (cell range and BS den-
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sity, number sub-carriers per sub-channel, MS location), and QoS parameters

(capacity, effective SIR and related outage probabilities). In this section, we

illustrate the latter point by considering an operator willing to offer a service

with QoS defined by a target throughput of D̃ kbps and an associated outage

probability Pout (e.g. a streaming service).

5.1. Outage Capacity

A first simple application of our study is the determination of the outage

capacity. Sub-channel capacity is here defined as

Cch = NscWsc log2(1 + SIReff), (28)

where Wsc is the sub-carrier bandwidth. Fig. 8 shows the outage capacity for

different numbers of sub-carriers and Wsc = 11 kHz, which is the sub-carrier

bandwidth in IEEE 802.16e OFDMA. For example, 98% of the users reach

more than 2 Mbps at 200 m from the BS if Nsc = 48 sub-carriers are used

per sub-channel.

With this kind of curve, the operator is able to know at each distance

which capacity can be guaranteed with a target outage probability. This

result is particularly needed for streaming services, for which the average

capacity is not sufficient in the dimensioning process.

5.2. Sub-carrier Allocation

The question arises of knowing how many sub-carriers should be allocated

to each MS or sub-channel in order to reach the targeted QoS. According to
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Eq. 28 and 26:

Pout = P(Cch ≤ D̃), (29)

= P(SIReff ≤ 2
D̃

NscWsc − 1), (30)

= 1 − Q





D̃
NscWsc

− µMIC

σ′

MIC√
Nsc



 , (31)

where σ′
MIC =

√
NscσMIC . The solution of this equation is given by

(see C):

Nsc =
D̃

WscµMIC

+

[

Aσ′
√

2µMIC

]2


1 + ǫ

[

1 +
4D̃µMIC

WscA2σ
′2
MIC

]
1

2



 , (32)

where A = Q−1(1 − Pout) and ǫ = ±1. ǫ = +1 if Pout < 0.5; ǫ = −1 if

Pout > 0.5. If Pout = 0.5, then Nsc = D̃
WscµMIC

. Recall that µMIC and σ′
MIC

are defined for a certain distance r from the base-station.
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The first term of the RHS of Eq. 32 is simply the average number of

sub-carriers needed to reach throughput D̃ at distance r. The second term is

a corrective term that takes into account the requirement in terms of outage

probability.

5.3. Capacity/Coverage Trade-off

In this subsection, we illustrate the trade-off between coverage and ca-

pacity with regards to the number of sub-carriers per sub-channel.

Each active MS is assigned a unique sub-channel and traffic is here quan-

tified by the density of active MS, computed in a disk of radius r with the

following formula:

ρMS =
NT

sc/Nsc

πr2
, (33)

where NT
sc is the total number of sub-carriers and NT

sc/Nsc can be interpreted

as the maximum number of simultaneous MS transfers.

In order to study the effect of a traffic increase on coverage, we compare

in Fig. 9 three strategies for the sub-carriers allocation to sub-channels:

Strategy 1 (ECS): Equal and constant sub-channel sizes. We compute

the number of needed sub-carriers Nsc (Eq. 32) at cell edge (r = Rc) and

allocate this number of sub-carriers to all MS whatever their location in the

cell. The number of active MS is thus constant equal to NT
sc/Nsc. This defines

a maximum MS density the network (Eq. 33 with r = Rc) can bear without

coverage holes. When the MS density increases, strategy 1 keeps the sub-

channel size constant; the coverage range is thus reduced because the number

of active MS is constant; coverage holes appear. The dotted line of Fig. 9

represents the coverage range, r, as a function of ρMS with Nsc constant.
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Strategy 2 (EVS): Equal and variable sub-channel sizes. Like for strat-

egy 1, we compute the number of needed sub-carriers Nsc at cell edge (r = Rc)

and allocate this number of sub-carriers to all MS whatever their location

in the cell. Contrary to strategy 1 however, when the MS density increases,

the sub-channel size is recomputed at the new coverage range. The solid line

with circle marks of Fig. 9 is obtained by applying strategy 1 on a disk of

radius r, the coverage range.

Strategy 3 (ACS): Adaptive sub-channel sizes. The number of sub-

carriers is allocated to MS according to their location, i.e., to their distance

to the base-station. The closer is the MS to the BS, the lower is the required

number of sub-carriers per sub-channel. The solid line with square marks of

Fig. 9 is obtained by computing the average number of required sub-carriers

over a disk of radius r, the coverage range, and using Eq. 33.

Fig. 9 shows the influence of traffic increase on the coverage range for the

three strategies, D̃ = 256 kbps, Pout = 2%, Rc = 1 km and NT
sc = 1536. Up to

a MS density of ρMS = 7.6 MS/km2, strategies 1 and 2 ensures a continuous

coverage of the service. Thanks to the sub-channel size adaptation, strategy

3 can support a MS density of 12.8 MS/km2.

As ρMS increases, coverage range decreases, only MS close to the base-

station can still be served. As an example, for ρMS = 20 MS/km2, coverage

ranges are about 0.61 km, 0.78 km and 0.88 km resp. for strategies 1, 2 and

3.

5.4. Network Densification

In the previous section, the inter-BS distance and thus Rc has always been

kept constant. A solution to cope with traffic increase consists of densifying
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carriers per subchannel (solid) or with variable number of sub-carriers (circles) (D̃ =

256 kbps, Pout = 2%, Wsc = 11 kHz, σ = 6 dB, Rc = 1 km).

the network, i.e., increasing the BS density and so decreasing the cell range

Rc. In Fig. 10, we plot the strategy 3 curve obtained in the last section (solid

curve with squares, fixed BS density). We also plot two curves along with

BS density is variable (solid and dotted curves with crosses).

We still assume that the operator has dimensioned his network for a

streaming service requiring D̃ = 256 kbps guarantee with Pout = 2% and

for an initial MS density of 12.85 MS/km2 (as shown on the figure on the

upper left point of the curve). As in the previous section, when MS density

increases, e.g. to 23.15 MS/km2, coverage holes appear, the coverage range

is reduced to 850 m (system follows the fixed BS density curve).

To combat this phenomenon and to reach again a full coverage, the oper-

ator has two choices: (a) it can keep the same QoS requirement and highly

densify the network (new cell range is Rc = 750 m; on the figure, the system

jumps to the solid line with crosses); or (b) it decides to reduce the QoS re-
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Figure 10: Network densification example (D̃ = 256 kbps and 128 kbps, Pout = 2%,

Wsc = 11 kHz, σ = 6 dB, strategy 3).

quirement to 128 kbps and densify the network (but with a higher cell range

of about Rc = 950 m, the system jumps to the dotted line with crosses).

These two curves have been obtained by varying Rc in Eq. 50 and using

strategy 3 for two different target throughputs and a full coverage (r = Rc

in Eq. 32).

Fig. 11 shows the impact of the outage probability and of the path-loss

exponent on the cell capacity as a function of the half-distance between BS,

Rc. All curves show that decreasing Rc, i.e., densifying, increases the network

capacity. Decreasing the QoS constraint from Pout = 2% to Pout = 10% or

Pout = 20% allows an increase of the network capacity of resp. 19% and 32%

(Fig. 11 left).

As it is well known, network capacity increases with the path-loss ex-

ponent because the influence of the interferers is lower. With our analysis,

we are able to easily quantify the impact of the environment. For example,
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on the cell capacity as a function of the half-distance between BS (D̃ = 256 kbps, Wsc =

11 kHz, σ = 6 dB, strategy 3) η = 3 (left), Pout = 2% (right).

going from η = 3 to η = 3.5 leads to a 45% increase for the network capacity

(Fig. 11 right).

6. Conclusion

In this paper, we propose and validate by Monte Carlo simulations an

analytical model for the performance estimation of cellular OFDMA net-

works. We address the issue of finding an easy-to-use formula for the outage

probability, while considering the joint effect of path-loss, shadowing and

fast fading. Firstly considering the notion of MIC, we rely on the Gaussian

approximation to express the SIR distribution as a function of the mean and

standard deviation of the SIR on a generic sub-carrier. We then analyze the
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single-carrier case in order to provide simple formulas of these two moments.

At last, the fluid model allows us to obtain expressions that only depend

on the distance to the serving BS. Monte Carlo simulations show that our

assumptions are valid for a wide range of parameters. The formulas derived

in this paper allow to obtain performances results instantaneously. As an ex-

ample of application, we propose an analysis of the outage capacity, coverage

and densification of a network offering a streaming service.

A. Interference Power

The power received from BS j by a MS at distance rj is a log-normal RV

Zj defined by ln(Zj) ∝ N(amj , a
2σ2

j ). We can write mj = 1
a

ln(Pjr
−η
j ) (to

simplify the calculation we consider K = 1).

The total power received from interfering BS is expressed as a lognormal

RV W (according to the Fenton-Wilkinson approach [1]) defined by ln(W ) ∝
N(am, a2σ2

t ) and we can write:

am = ln

(

N
∑

j=1

e(ln Pj−η ln rj+
a2σ2

j

2
)

)

− a2σ2
t

2
. (34)

Assuming that ∀j Pj = P0 and σj = σ:

am = (ln P0 +
a2σ2

2
) + ln(

N
∑

j=1

e−η ln rj ) − a2σ2
t

2
. (35)

We can now express the mean interference power Pext received by a MS as:

ln(Pext) = (ln P0 +
a2σ2

2
) + ln(

N
∑

j=1

r−η
j ) − a2σ2

t

2
. (36)
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The variance a2σ2
t of the sum of interferences is written as:

a2σ2
t = ln





∑

j e(2amj+a2σ2)(ea2σ2−1)

(
∑

j expamj+ a2σ2

2 )2
+ 1



 . (37)

Introducing

G(η) =

∑N
j=1 r−2η

j
(

∑N
j=1 r−η

j

)2 , (38)

the mean value of the total interference received by a mobile is given by

Pext = P0

N
∑

j=1

r−η
j e

a2σ2

2

(

(ea2σ2 − 1)G(η) + 1
)−1/2

, (39)

and

a2σ2
t = ln

(

(ea2σ2 − 1)G(η) + 1
)

+ ln
(

ea2σ2

)

. (40)

We denote Pint the power received by a MS from its serving BS. Since

the ratio of two lognormal RV’s is also a lognormal RV, we can write the

following mean:

Mf =
Pext

Pint

(41)

and thus, considering that MS is at distance r from its serving BS, we can

write:

Mf =

∑

j r−η
j

r−η
e

a2σ2

2

(

(ea2σ2 − 1)G(η) + 1
)−1/2

. (42)

Finally, denoting:

H(σ) = e
a2σ2

2

(

(ea2σ2 − 1)G(η) + 1
)−1/2

, (43)

we have

Mf = yf(η)H(σ). (44)
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In dB, we can express

mf =
1

a
ln(yf(η)H(σ)). (45)

In a analogue analysis, the standard deviation is given by a2s2
f = a2σ2

t +

a2σ2 so we have

a2s2
f = 2(a2σ2 − ln(H(σ))). (46)

B. Analytical Fluid Model

In this section, we recall results obtained in [5] and we adapt the notations

to the system model presented in this paper. From Eq. 16, we can write:

yf(r, η) =

∑

j 6=0 r−η
j

r−η
=

∑

j 6=0 P0r
−η
j

P0r−η
. (47)

The numerator of yf represents the total power Pext,u received by MS u

coming from all the other BS of the system. The denominator of yf represents

the total power Pint,u received by MS u coming from its serving BS.

The key modelling step of the fluid model approach developed in [7] for

CDMA networks consists of replacing a given fixed finite number of BS by an

equivalent continuum of transmitters which are uniformly distributed with

density ρBS .

We focus on a given cell and consider a round shaped network around

this centre cell with radius Rnw. The half distance between two BS is Rc

(see Fig. 12). Let’s consider a mobile u at a distance ru from its serving BS.

In our model, each elementary surface zdzdθ at a distance z from u contains

ρBSzdzdθ base stations which contribute to Pext,u. Their contribution to

the external interference is ρBSzdzdθP0Kz−η (η > 2). We approximate the
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integration surface by a ring with centre u, inner radius 2Rc − ru, and outer

radius Rnw − ru (see Fig. 13):

Pext,u =

∫ 2π

0

∫ Rnw−ru

2Rc−ru

ρBSP0Kz−ηzdzdθ,

=
2πρBSP0K

η − 2

[

(2Rc − ru)
2−η − (Rnw − ru)

2−η
]

. (48)

Figure 12: Network and cell of interest in the fluid model; the distance between two BS is

2Rc and the network is made of a continuum of base stations.

Figure 13: Integration limits for external interference computation.

Moreover, MS u receives internal power from the serving BS, which is at

distance ru: Pint,u = P0Kr−η
u . So, the parameter yf = Pext,u/Pint,u can be
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expressed by (dropping the index u):

yf(r, η) =
2πρBSrη

η − 2

[

(2Rc − r)2−η − (Rnw − r)2−η
]

. (49)

The closed-form formula of yf(r) given by the fluid model is validated by

comparison with simulations in Section 4.2.

Compared to Eq. 16, we have now an expression of yf that does not

depend any more on the distances to the interferers {rj}j 6=0 but only on the

distance r to the BS.

If the network is large, i.e., Rnw is big in front of Rc, yf can be further

approximated by:

yf(r, η) =
2πρBSrη

η − 2
(2Rc − r)2−η. (50)

We notice that yf represents the inverse of the SIR without shadowing or

fast fading. So we can write from Eq. 50:

γ =
η − 2

2πρBSrη(2Rc − ru)2−η
. (51)

This closed-form formula allows us to fastly compute functions G and H ,

parameters mf and sf , MIC mean and standard deviation µMIC and σMIC ,

and thus outage probabilities for single and multi-carrier systems.

C. Computation of Nsc

Eq. 29 is equivalent to the following:

D̃√
NscWscσ

′
MIC

− µMIC

√
Nsc

σ′
MIC

= A. (52)
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Since the function f(x) = D̃√
xWscσ′

MIC

− µMIC

√
x

σ′

MIC

is strictly decreasing on

]0; +∞[ and takes values in ] − ∞; +∞[, there is a unique solution. Then

taking the square of both sides:

W 2
scσ

′2
MICN2

sc − (2WscD̃µMIC + W 2
scσ

′2
MICA2)Nsc + D̃2 = 0. (53)

This equation has two solutions given by Eq. 32. If A < 0, i.e. Pout < 0.5,

then Nsc > D̃/WscµMIC according to Eq. 52, the second term of RHS of

Eq. 32 should be positive and ǫ = 1.
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