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HIGH ORDER CHAOTIC LIMITS OF WAVELET SCALOGRAMS UNDER

LONG–RANGE DEPENDENCE

M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

Abstract. Let G be a non–linear function of a Gaussian process {Xt}t∈Z with long–range
dependence. The resulting process {G(Xt)}t∈Z is not Gaussian when G is not linear. We con-
sider random wavelet coefficients associated with {G(Xt)}t∈Z and the corresponding wavelet
scalogram which is the average of squares of wavelet coefficients over locations. We obtain
the asymptotic behavior of the scalogram as the number of observations and scales tends to
infinity. It is known that when G is a Hermite polynomial of any order, then the limit is
either the Gaussian or the Rosenblatt distribution, that is, the limit can be represented by
a multiple Wiener-Itô integral of order one or two. We show, however, that there are large
classes of functions G which yield a higher order Hermite distribution, that is, the limit can
be represented by a a multiple Wiener-Itô integral of order greater than two. This happens
for example if G is a linear combination of a Hermite polynomial of order 1 and a Hermite
polynomial of order q > 3. The limit in this case can be Gaussian but it can also be a
Hermite distribution of order q − 1 > 2. This depends not only on the relation between the
number of observations and the scale size but also on whether q is larger or smaller than
a new critical index q∗. The convergence of the wavelet scalogram is therefore significantly
more complex than the usual one.
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1. Introduction

Denote by X = {Xt}t∈Z a centered stationary Gaussian process with unit variance and
spectral density f(λ), λ ∈ (−π, π). Such a stochastic process is said to have short memory
or short–range dependence if f(λ) is bounded around λ = 0 and long memory or long–range
dependence if f(λ) → ∞ as λ → 0. We will suppose that {Xt}t∈Z has long memory with
memory parameter 0 < d < 1/2, that is,

f(λ) ∼ |λ|−2df∗(λ) as λ→ 0 (1)

where f∗(λ) is a bounded spectral density which is continuous and positive at the origin. This
hypothesis is semi–parametric in nature because the function f∗ plays the role of a “nuisance
function”. It is convenient to set

f(λ) = |1− e−iλ|−2df∗(λ), λ ∈ (−π, π] . (2)

Since the process X is defined only if
∫ π
−π f(λ)dλ <∞, we need to require d < 1

2 .

Consider now a process {Yt}t∈Z, such that
(
∆KY

)
t
= G(Xt), t ∈ Z , (3)

forK ≥ 0, where (∆Y )t = Yt−Yt−1, {Xt}t∈Z is Gaussian with spectral density f satisfying (2)
and where G is a function such that E[G(Xt)] = 0 and E[G(Xt)

2] < ∞. While the process
{Yt}t∈Z is not necessarily stationary, its K–th difference ∆KYt is stationary and is the output
of a non–linear filter G with Gaussian input.
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We shall study the asymptotic behavior of the wavelet scalogram of {Yt}t∈Z, that is, the
average of squares of its wavelet coefficients. As shown in Flandrin [1992], Abry and Veitch
[1998], Veitch and Abry [1999] and Bardet [2000] in a parametric context, the normalized
limit of scalogram can be used to estimate the long memory exponent d defined in (1). See
also Abry et al. [2011] for recent empirical studies.

In the semi–parametric context, the case where the function G is linear was firstly con-
sidered in Moulines et al. [2007] and the case where G is a Hermite polynomial of arbitrary
order was studied in Clausel et al. [2011b]. The case where G(Xt) is the so–called “Rosen-
blatt process” was studied by Bardet and Tudor [2010] and is somewhat analogous to the one
where G is the second Hermite polynomial. Our goal is to show that for more complicated
functions G, one can obtain new types of limits.

We have referred to Hermite polynomials a number of times. This is because they form a
basis for the space of functions G and thus appear naturally in our setting. Since the function
G satisfies E[G(X)] = 0 and E[G(X)2] < ∞ for X ∼ N (0, 1), G(X) can be expanded in
Hermite polynomials, that is,

G(X) =

∞∑

q=1

cq
q!
Hq(X) . (4)

One sometimes refer to (4) as an expansion in Wiener chaos. The convergence of the infinite
sum (4) is in L2(Ω),

cq = E[G(X)Hq(X)] , q ≥ 1 , (5)

and

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
,

are the Hermite polynomials. These Hermite polynomials satisfyH0(x) = 1,H1(x) = x,H2(x) =
x2 − 1 and one has

E[Hq(X)Hq′(X)] =

∫

R

Hq(x)Hq′(x)
1√
2π

e−x2/2dx = q!1{q=q′} .

Observe that the expansion (4) starts at q = 1, since

c0 = E[G(X)H0(X)] = E[G(X)] = 0 , (6)

by assumption. Denote by q0 ≥ 1 the Hermite rank of G, namely the index of the first
non–zero coefficient in the expansion (4). Formally, q0 is such that

q0 = min{q ≥ 1, cq 6= 0} . (7)

One has then
+∞∑

q=q0

c2q
q!

= E[G(X)2] <∞ . (8)

We will focus on the wavelet coefficients of the sequence {Yt}t∈Z in (3). Since {Yt}t∈Z is
random so will be its wavelet coefficients which we denote by {Wj,k, j ≥ 0, k ∈ Z}, where j
indicates the scale and k the location. These wavelet coefficients are defined by

Wj,k =
∑

t∈Z

hj(γjk − t)Yt , (9)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative decimation factors applied at scale j, for
example γj = 2j and hj is a filter whose properties are listed in Appendix B. We follow the
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engineering convention where large values of j correspond to large scales. Our goal is to find
the distribution of the empirical quadratic mean of these wavelet coefficients at large scales
j → ∞, that is, the asymptotic behavior of the wavelet scalogram

Snj ,j =
1

nj

nj−1∑

k=0

W 2
j,k , (10)

adequately centered and normalized as the scale j and the number of wavelets coefficients nj
available at scale j both tend to infinity.

The reduction theorem of Taqqu [1975] states that if G(Xt) is long–range dependent then

the limit in the sense of finite–dimensional distributions of
∑[nt]

k=1G(Xk) adequately normal-
ized, depends on the first term in the Hermite expansion of G. In other words, there exist
normalization factors an → ∞ as n→ ∞ such that

1

an

[nt]∑

k=1

G(Xk) and
1

an

[nt]∑

k=1

cq0
q0!
Hq0(Xk) ,

have the same non–degenerate limit as n→ ∞.
We are interested here, however, in the asymptotic behavior of the wavelet scalogram Snj ,j

in (10). We want to find exponents α > 0 and ν > 0 such that as nj and j tend to ∞,

{nαj γ−ν
j Snj+u,j+u, u ∈ Z} , (11)

tends, after centering, to a limit in the sense of the finite–dimensional distributions in the
scale u. This is a necessary and important step in developing methods for estimating the
underlying long memory parameter.

The limit of the sequence Snj ,j will be related to the so–called Hermite process. The
Hermite process is a self-similar stochastic process, with stationary increments and long range
dependence. The Hermite process of order q lives in the qth Wiener chaos, that is, it can be
written as an iterated multiple integral of order q with respect to white noise. We refer to
Definition 2.1 below for the precise representation.

We will see that, in the scalogram setting, the reduction theorem mentioned above does
not hold anymore. For example if G(Xt) = H1(Xt) +Hq1(Xt), q1 ≥ 3 then the Hermite rank
is q0 = 1. But the limit of the normalized scalogram is not necessarily the same as that of
H1(Xt) = Xt. This is essentially due to the fact that the scalogram involves squares and, in
addition, depends on two parameters j and nj which both tend to ∞.

In Clausel et al. [2011b], the case

G(Xt) = Hq(Xt), q ≥ 2 ,

was studied and it was shown that in this case the limit is a Rosenblatt process (see Defi-
nition 2.1). In the present paper we study other classes of functions G for which different
Hermite processes appear in the limit. For example, for the process

G(Xt) = H1(Xt) +Hq1(Xt), q1 ≥ 3 ,

considered above, the limit of (11) may be either Gaussian, a Hermite process of order q1 − 1
or a Rosenblatt process depending on the specific circumstances. We will show the existence
of a critical index q∗1 and of critical exponents ν, ν ′ such that when q1 < q∗1, then :

• the limit is Gaussian if nj ≪ γνj ,

• the limit is a Hermite process of order q1 − 1 if γνj ≪ nj ≪ γν
′

j ,
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• the limit is a Rosenblatt process if γν
′

j ≪ nj,

where aj ≪ bj means that aj = o(bj) as j → ∞.
We will also study interesting cases where the function G has a Hermite rank greater than

two.
The paper is organized as follows. Long range–dependence and the multidimensional

wavelet scalogram are introduced in Section 2. The main results are stated and illustrated
in Section 3. The chaos decomposition of the scalogram is given in Section 4. The study of
the leading terms is done in Sections 5 and 6. The proofs of the main theorems are given in
Section 7 while Section 8 contains some technical lemmas. Basic facts about the Wiener chaos
are gathered in Appendix A and Appendix B lists the assumptions on the wavelet filters.

2. Long–range dependence and the multidimensional wavelet scalogram

The Gaussian sequence X = {Xt}t∈Z with spectral density (2) is long–range dependent
because d > 0 and hence its spectrum explodes at λ = 0. Whether {Hq(Xt)}t∈Z is also
long–range dependent depends on the respective values of q and d. We show in Clausel et al.
[2011a], that the spectral density of {Hq(Xt)}t∈Z behaves like |λ|−δ+(q) as λ→ 0, where

δ+(q) = max(δ(q), 0) and δ(q) = qd− (q − 1)/2 . (12)

Hence δ+(q) is the memory parameter of {Hq(Xt)}t∈Z. Therefore, since 0 < d < 1/2,
{Hq(Xt)}t∈Z, q ≥ 1, is long–range dependent if and only if

δ(q) > 0 ⇐⇒ (1/2)(1 − 1/q) < d < 1/2 , (13)

that is, d must be sufficiently close to 1/2. Specifically, for long–range dependence,

q = 1 ⇒ d > 0, q = 2 ⇒ d > 1/4, q = 3 ⇒ d > 1/3, q = 4 ⇒ d > 3/8 . (14)

From another perspective,

δ(q) > 0 ⇐⇒ 1 ≤ q < 1/(1 − 2d) , (15)

and thus {Hq(Xt)}t∈Z is short–range dependent if q ≥ 1/(1 − 2d).
We shall suppose that the Hermite rank of G is q0 ≥ 1, that is the expansion of G(Xt)

starts at q0. We always assume that {Hq0(Xt)}t∈Z has long memory, that is,

q0 < 1/(1 − 2d) . (16)

The condition (16), with q0 defined as the Hermite rank (7), ensures such that {∆KY }t∈Z =
{G(Xt)}t∈Z is long-range dependent (see Clausel et al. [2011a], Lemma 4.1). We are mainly
interested in the asymptotic behavior of the scalogram Snj ,j, defined by (10) as nj → ∞
(large sample behavior) and j → ∞ (large scale behavior). More precisely, we will study the
asymptotic behavior of the sequence

Snj+u,j+u = Snj+u,j+u − E(Snj+u,j+u) =
1

nj+u

nj+u−1∑

k=0

(
W 2

j+u,k − E(W 2
j+u,k)

)
, (17)

adequately normalized as j, nj → ∞.
There are two perspectives. One can consider, as in Clausel et al. [2011a], that the wavelet

coefficients Wj+u,k are processes indexed by u taking a finite number of values. A second
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perspective consists in replacing instead the filter hj in (9) by a multidimensional filter hℓ,j , ℓ =
1, · · · ,m and thus replacing Wj,k in (9) by

Wℓ,j,k =
∑

t∈Z

hℓ,j(γjk − t)Yt .

We adopted this second perspective in Clausel et al. [2011b] and we also adopt it here since it
allows us to compare our results to those obtained in Roueff and Taqqu [2009] in the Gaussian
case.

We use bold faced symbols Wj,k and hj to emphasize the multivariate setting and let

hj = {hℓ,j , ℓ = 1, · · · ,m}, Wj,k = {Wℓ,j,k, ℓ = 1, · · · ,m} ,
with

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KG(Xt), j ≥ 0, k ∈ Z . (18)

We then will study the asymptotic behavior of the sequence

Snj ,j =
1

nj

nj−1∑

k=0

(
W2

j,k − E[W2
j,k]
)
, (19)

adequately normalized as j → ∞, where, by convention, in this paper,

W2
j,k = {W 2

ℓ,j,k, ℓ = 1, · · · ,m} . (20)

The squared Euclidean norm of a vector x = [x1, . . . , xm]T will be denoted by |x|2 = x21 +
· · ·+ x2m.

It turns out that the asymptotic behavior of Snj ,j depends on how the subsequence of Her-
mite coefficients cq, q ≥ 1 which are non-vanishing is distributed. We denote this subsequence
by {cqℓ}ℓ∈L where L is a sequence of consecutive integers starting at 0,

L ⊆ {0, 1, 2, . . . } , (21)

with same cardinality as the set of non-vanishing coefficients, and (qℓ)ℓ∈L is a (finite of infinite)
increasing sequence of integers such that

q0 = index of the first non–zero coefficient cq,

qℓ = index of the (ℓ+ 1)th non–zero coefficient , ℓ ≥ 1 .

Examples

1) If

G(Xt) = c1H1(Xt) +
c3
3!
H3(Xt) ,

where c1 6= 0, c2 = 0, c3 6= 0, cq = 0 for q ≥ 4, then q0 = 1, q1 = 3 and L = {0, 1}.
2) If

G(Xt) =
c2
2!
H2(Xt) +

c3
3!
H3(Xt) +

c4
4!
H4(Xt) ,

where c1 = 0, c2 6= 0, c3 6= 0, c4 6= 0, cq = 0 for q ≥ 5, then q0 = 2, q1 = 3, q2 = 4 and
L = {0, 1, 2}.

3) If

G(Xt) =

∞∑

q=1

cq
q!
Hq(Xt) ,

where cq 6= 0 for q ≥ 1 then q0 = 1, q1 = 2, . . . , and L = {0, 1, 2, · · · }.
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4) If

G(Xt) =
cq0
q0!
Hq0(Xt) ,

where cq0 6= 0 and cq = 0 for q 6= q0, then L = {0}.
While c0 is always equal to 0 (see (6)), the assumption (7) ensures that cq0 6= 0 and hence

that L always contains the index 0, so that L is never empty. In particular, we may write

(∆KY )t = G(Xt) =
∑

ℓ∈L

cqℓ
qℓ!
Hqℓ(Xt), t ∈ Z , (22)

where, if L is infinite, the sum converges in the L2 sense.
We set

I = {ℓ ∈ L : ℓ+ 1 ∈ L, qℓ+1 − qℓ = 1} , (23)

J = {(ℓ1, ℓ2) ∈ L2 : ℓ1 < ℓ2, qℓ1 6= 1 and qℓ2 − qℓ1 ≥ 2} , (24)

that is, qℓ and qℓ+1 take consecutive values when ℓ ∈ I and qℓ1 and qℓ2 differ by two or more
when (ℓ1, ℓ2) ∈ J . The structure of these two sets is particulary important. The set I could
be empty (there are no consecutive values of qℓ) or not empty. Then we set

ℓ0 =

{
min(I) ≥ 0 , when I is not empty ,

∞ :, when I is empty .
(25)

When ℓ0 is finite (that is, I is not empty), qℓ0 is the smallest index q such that two Hermite
coefficients cq, cq+1 are non–zero. It will be involved in the normalization. We define, in
addition,

m0 = min({ℓ ∈ L, qℓ ≥ 3}) ≥ 0 . (26)

Thus qm0 is the smallest index q such that cq is non–zero with q ≥ 3.

Examples

1) If

G(Xt) = c1H1(Xt) +
c2
2!
H2(Xt) +

c4
4!
H4(Xt) ,

where c1 6= 0, c2 6= 0, c3 = 0, c4 6= 0, cq = 0 for q ≥ 5 then L = {0, 1, 2}, I = {1},
ℓ0 = 1, m0 = 4 and J = {(2, 4)}.

2) If

G(Xt) =
c2
2!
H2(Xt) +

c3
3!
H3(Xt) +

c4
4!
H4(Xt) ,

where c1 = 0, c2 6= 0, c3 6= 0, c4 6= 0, cq = 0 for q ≥ 5, then L = {0, 1, 2}, I = {2, 3},
ℓ0 = 2, m0 = 3 and J = {(2, 4)}.

3) If

G(Xt) = c1H1(Xt) = c1Xt ,

where c1 6= 0 and cq = 0 for q ≥ 2, then L = {0} and both I and J are empty.

We are interested in the asymptotic behavior of the normalized scalogram Snj ,j defined
in (19). This behavior depends on the sets J and I. These sets affect both the rate of
convergence and the limit distribution of the rescaled sequence. The limit (see Section 3) will
be expressed in terms of the Hermite processes which are defined as follows :
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Definition 2.1. The Hermite process of order q and index

(1/2)(1 − 1/q) < d < 1/2 , (27)

is the continuous time process

Zq,d(t) =

∫ ′′

Rq

ei(u1+···+uq) t − 1

i(u1 + · · · + uq)
|u1 · · · uq|−d dŴ (u1) · · · dŴ (uq), t ∈ R . (28)

It is Gaussian and called Fractional Brownian Motion when q = 1 and 0 < d < 1/2. It is
non Gaussian and called Rosenblatt process when q = 2 and 1/4 < d < 1/2. The marginal
distribution of Zq,d(t) at t = 1 is called the Hermite distribution of index q. It is called a
Rosenblatt distribution when q = 2.

The multiple integral (28) is defined in Appendix A. The symbol
∫ ′′
Rq indicates that one

does not integrate on the diagonal ui = uj, j 6= i. The integral is well-defined when (27)
holds or equivalently when,

1 ≤ q < 1/(1 − 2d) ,

because then it has finite L2 norm. This process is self–similar with self-similarity parameter

H = dq + 1− q/2 = δ(q) + 1/2 ∈ (1/2, 1),

that is for all a > 0, {Zq,d(at)}t∈R and {aHZq,d(t)}t∈R have the same finite dimensional
distributions, see Taqqu [1979].

3. Main results

We shall now state the main results and discuss them. They are proved in the following
sections. We start with the assumptions

Assumptions A {Wj,k, j ≥ 1, k ∈ Z} are the multidimensional wavelet coefficients defined
by (18) , where

(i) {Xt}t∈Z is a stationary Gaussian process with mean 0, variance 1 and spectral density
f satisfying (2).

(ii) G is a real-valued function whose Hermite expansion (4) satisfies condition (16),
namely q0 < 1/(1 − 2d), and whose coefficients in Hermite expansion satisfy the
following condition : for any λ > 0

cq = O(e−λq) as q → ∞ . (29)

(iii) the wavelet filters (hj)j≥1 and their asymptotic Fourier transform ĥ∞ satisfy (W-a)–
(W-c) with M vanishing moments. See details in Appendix B.

We shall focus on the asymptotic behavior of the scalogram for two basic classes of functions
G.

• The first class involves functions G with Hermite rank greater or equal to 2 and with
two consecutive terms in the Hermite expansion, both of which having long–range
dependence. The result is stated in Theorem 3.1.

• The second class involves functions G with Hermite rank equal to 1 with no two
consecutive terms with long–range dependence. The results are stated in Theorems 3.2
and 3.3.

Other classes are left for future work.
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3.1. G has a Hermite rank greater or equal to 2. Consider functions G of the form

G(x) =
c2
2!
H2(x) + · · ·+

cqℓ0
qℓ0 !

Hqℓ0
(x) +

cqℓ0+1

(qℓ0 + 1)!
Hqℓ0+1(x) + · · · .

where c1 = 0. Some of the cq, q ≥ 2 may be zero as well. More precisely assume that

q0 ≥ 2 , (30)

that is, that the Hermite rank of G is 2 or more. Also assume that (a) there exists two
consecutive terms and that (b) both are long range dependent. Assumption (a) implies that
the set I in (23) is not empty. Since the index qℓ0 (see (25)) of the first of these two consecutive
terms could be q0 ≥ 2, we have qℓ0 ≥ 2. The index of the second of these consecutive terms
is qℓ0 + 1 ≥ 3. Assumption (b) will be satisfied if this second term is long-range dependent,
that is

qℓ0 + 1 < 1/(1 − 2d) , (31)

by (15). We note that this situation implies the following boundaries for the parameter d:

1/3 < d < 1/2 ,

as indicated in (27).
Set

ν = 2qℓ0 + 1− 2q0 . (32)

The following theorem provides the limit of (19) for two different cases, depending on
whether the limit of n−1

j γνj when j → +∞ is null or infinite. It involves K ≥ 0 defined

in (3), q0 in (7), δ(q) is defined in (12), ℓ0 in (25). The integer M is the number of vanishing
moments of the wavelet filters and appears in Appendix B.

Theorem 3.1. Suppose that Assumptions A hold with M ≥ K + δ(q0). Suppose moreover
that the Hermite expansion of G satisfies (30) and (31).

Then two limits in distribution of the centered multidimensional scalogram Sn,j in (19),
suitably normalized, are possible. They involve the Hermite processes in Definition 2.1 evalu-
ated at time t = 1. The coefficients involve ℓ0 and the multidimensional deterministic vector

Lq, whose entries [Lq(ĥℓ,∞)]ℓ=1,··· ,m are defined as

Lq(ĥℓ,∞) =

∫

Rq

|ĥℓ,∞(u1 + · · ·+ uq)|2
|u1 + · · ·+ uq|2K

q∏

i=1

|ui|−2d du1 · · · duq , (33)

which is finite for any q < 1/(1 − 2d). Then

(a) If nj ≪ γνj then, as j, nj → ∞,

n1−2d
j γ

−2(δ(q0)+K)
j Snj ,j

(L)→
c2q0

(q0 − 1)!
(2π)q0−1 [f∗(0)q0Lq0−1]Z2,d(1) .

(b) If γνj ≪ nj then, as j, nj → ∞,

n
(1−2d)/2
j γ

−(δ(qℓ0 )+δ(qℓ0+1)+2K)

j Snj ,j
(L)→ 2

cqℓ0 cqℓ0+1

qℓ0 !
(2π)qℓ0

[
f∗(0)qℓ0+1/2 Lqℓ0

]
Z1,d(1) .

Remarks.
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1. Using (132) with M ≥ K and α > 1/2, the integral in (33) is finite for any positive
integer q < 1/(1 − 2d), see Lemma 5.1 in Clausel et al. [2011a]. Thus, under Condi-
tions (30) and (31), the vectors Lq0−1 and Lqℓ0

appearing in the limits of Cases (a)

and (b) have finite entries.
2. In case (a), the limit is a deterministic vector times the non-Gaussian Rosenblatt

random variable Z2,d(1), that is, the Rosenblatt process Z2,d(t) defined in (28) and
evaluated at time t = 1. In case (b), the limit is a deterministic vector times the
Gaussian random variable Z1,d(1), that is, Fractional Brownian motion Z1,d(t) defined
in (28) and evaluated at time t = 1.

3. In the case where nj ∼ C0γ
ν
j as j → ∞ for some C0 > 0, the scalogram is asymptoti-

cally a linear combination of a Rosenblatt and a Gaussian variable. Indeed, using the
results of Section 6, one can see that the scalogram is the sum of two terms having
the same order, both converging in the L2 sense respectively to a Rosenblatt and a
Gaussian variable.

Proof. This theorem is proved in Section 7.1. �

In the framework of wavelet analysis as in Moulines et al. [2007], we have γj = 2j and the
number n = nj of wavelet coefficients available at scale j, is related both to the number N
of observations Y1, · · · , YN of the time series Y and to the length T of the support of the
analyzing wavelet. More precisely, one has (see Moulines et al. [2007] for more details),

nj = [2−j(N − T + 1)− T + 1] = 2−jN +O(1) , (34)

where [x] denotes the integer part of x for any real x. Note that the assumption nj → ∞
when j → ∞ is equivalent to N → ∞ faster than 2j . Moreover, for any ν > 0,

nj ≪ 2jν ⇐⇒ 2−jN ≪ 2jν ⇐⇒ N ≪ 2j(ν+1) when N → ∞ . (35)

Examples. We now illustrate Theorem 3.1 through three examples :

(i) G = Hq0 with q0 ≥ 2.
(ii) G = Hq0 +Hq0+1 with q0 ≥ 2, q0 + 1 < 1/(1 − 2d).
(iii) G = Hq0 +Hq0+1 +Hq1 with q0 ≥ 2, q0 + 1 < 1/(1 − 2d) and with q1 − (q0 + 1) ≥ 2,

that is, J = {(q0 + 1, q1)}.
In all cases, the integer q0 denotes the Hermite rank of G.

Let us elaborate on the conditions on d and the resulting limits for these examples. For
simplicity, we assume that the scalogram Snj ,j is univariate.

Example (i). When G = Hq0 with q0 ≥ 2, I and J are both empty. Since I is empty
one can regard ℓ0 and consequently qℓ0 and ν as infinity, which suggests that we are in
case (a), independently of the growths of nj versus γj as j → ∞. The asymptotic behavior of
the scalogram of this example is treated by Theorem 3.1 in Clausel et al. [2011b] under the
condition q0 < 1/(1− 2d). Indeed, the obtained rate of convergence is the same as in case (a)
of Theorem 3.1 and the limit is also Rosenblatt. This also corresponds to the limit obtained
by Bardet and Tudor in the case where Y itself is the Rosenblatt process (see Theorem 4
of Bardet and Tudor [2010]).

Example (ii). Suppose G = Hq0 + Hq0+1, with q0 ≥ 2 and q0 + 1 < 1/(1 − 2d). Then
J is empty and I = {q0}. The Hermite rank of G is q0 and thus coincides with qℓ0 . As a
consequence, by (32), ν = 1. Let us use Eq. (35) to relate the asymptotic behavior to the
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number of observation N and the analyzing scale index j. Since ν = 1, we get that the
asymptotic behavior of the scalogram Snj ,j depends on whether, as j,N → ∞,

N ≪ 22j or if 22j ≪ N .

Let us explain how these two regimes show up in the limit. The wavelet coefficients of Y can
be expanded as follows

Wj,k =W
(q0)
j,k +W

(q0+1)
j,k ,

where W
(q0)
j,k ,W

(q0+1)
j,k belong respectively to the chaos of order q0 and q0 + 1. Then,

W 2
j,k =

(
[W

(q0)
j,k ]2 + [W

(q0+1)
j,k ]2

)
+
(
2W

(q0)
j,k W

(q0+1)
j,k

)
.

The term [W
(q0)
j,k ]2 behaves as in the case G = Hq0 and is asymptotically Rosenblatt as

proved in Clausel et al. [2011b]. The term [W
(q0+1)
j,k ]2 is asymptotically negligible as proved in

Proposition 5.1. The term W
(q0)
j,k W

(q0+1)
j,k , on the other hand, turns out to be asymptotically

Gaussian. The asymptotic behavior of the scalogram then depends on whether the Rosenblatt
term or the Gaussian term is leading. This depends on the limit of N/22j . Hence, both limits
stated in Theorem 3.1 may occur:

• If 2−2jN → 0, the term corresponding to [W
(q0)
j,k ]2 is leading and the scalogram Snj ,j

of Y is asymptotically Rosenblatt.

• If 2−2jN → ∞, the terms corresponding to W
(q0)
j,k W

(q0+1)
j,k are leading and the scalo-

gram Snj ,j of Y is asymptotically Gaussian.

Example (iii). Suppose G = Hq0 + Hq0+1 + Hq1 with q0 ≥ 2, q0 + 1 < 1/(1 − 2d) and
q1 − (q0 + 1) ≥ 2. Then I = {q0}, J = {(q0, q1), (q0 + 1, q1)}. Observe that in this case, J
is not involved in the limit of Snj ,j and the behavior of the scalogram is similar to that of
Example (ii). Thus, the two limits of Theorem 3.1 may occur.

3.2. The Hermite rank of G equals 1. Here we assume that

q0 = 1, 3 < q1 < 1/(1 − 2d) and ℓ0 = ∞ . (36)

In particular, this condition implies d > 1/3, thus d ∈ (1/3, 1/2). By definition of ℓ0 in (25),
the last condition in (36) means that there are no terms with consecutive indices in the
Hermite expansion. Thus

G = c1H1 +
cq1
q1!
Hq1 +

cq2
q2!
Hq2 + · · ·

where for any ℓ ∈ L, qℓ+1−qℓ ≥ 2. In this case the following critical index plays an important
role :

q∗1 = 2 +
1

2(1− 2d)
. (37)

It will also be useful to relate the number of available wavelet coefficients n = nj to γ
ν
j where

ν takes the following three values :

ν1 =
(1− 2d)(q1 − 1)

1− (1− 2d)(q1 − 1)
, ν2 =

1− 2d

2d− 1/2
(q1 − 1), ν3 =

q1 − 1

q1 − 3
. (38)

As shown in the following lemma, the relations between ν1, ν2 and ν3 depend on whether
q1 < q∗1 or q1 ≥ q∗1 :
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Lemma 3.1.

• If q1 < q∗1 then ν1 < ν2 < ν3.
• If q1 ≥ q∗1 then ν3 ≤ ν2 ≤ ν1.

Proof. To prove Lemma 3.1, observe that

ν1 =
(1− 2d)(q1 − 1)

1− (1− 2d)(q1 − 1)
< ν2 =

(1− 2d)(q1 − 1)

2d− 1/2
⇐⇒ 2d− 1

2
< 1− (1− 2d)(q1 − 1)

⇐⇒ q1 < 1 +
1− (2d− 1

2)

1− 2d
= q∗1 ,

and

ν2 =
(1− 2d)(q1 − 1)

2d− 1/2
< ν3 =

q1 − 1

q1 − 3
⇐⇒ q1 − 3 <

2d− 1
2

1− 2d
⇐⇒ q1 < 3 +

2d− 1
2

1− 2d
= q∗1 .

�

The next theorems indicate the limits in the various cases. We first consider the case where
q1 is lower than the critical index q∗1 .

Theorem 3.2. Suppose that Assumptions A hold with M ≥ K+d. Suppose moreover that the
Hermite expansion of G satisfies (36) and assume that q1 < q∗1, where q

∗
1 is defined in (37).

Then three limits of the multidimensional scalogram Sn,j in (19), suitably normalized, are
possible :

(a) If γν3j ≪ nj then as j, nj → ∞,

n1−2d
j γ

−2(δ(q1)+K)
j Snj ,j

(L)→ c2q1
(q1 − 1)!

(2π)q1−1 [f∗(0)]q1 Lq1−1 Z2,d(1) .

(b) If γν1j ≪ nj ≪ γν3j then as j, nj → ∞

n
(1−2δ(q1−1))/2
j γ

−(2δ(
q1+1

2
)+2K)

j Snj ,j
(L)→ 4πc1cq1

(q1 − 1)!
[f∗(0)](q1+1)/2L1Zq1−1,d(1) .

(c) If nj ≪ γν1j then as j, nj → ∞,

n
1/2
j γ

−(2d+2K)
j Snj ,j

(L)→ c21 N (0,Γ) ,

where Γ is defined as

Γi,i′ =
(f∗(0))2

π

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

|λ+ 2pπ|−2(K+d)[ĥi,∞ĥi′,∞](λ+ 2pπ)

∣∣∣∣∣∣

2

dλ, 1 ≤ i, i′ ≤ m . (39)

Remark 3.1. In case (a), the limit is a deterministic vector times the non-Gaussian Rosen-
blatt random variable Z1,d(1). In case (b), the limit is a deterministic vector times a Hermite
random variable of order q1 − 1 > 3− 1 = 2, which can be represented by a multiple Wiener
integral of order 3 or more (see Definition 2.1).

In the case where nj ∼ C0γ
ν3
j as j → ∞ for some C0 > 0, the scalogram is asymptotically

a linear combination of a Rosenblatt and a Hermite random variable. This is because it is
the sum of two terms both converging in L2 after normalization (see Section 6). On the other
hand if nj ∼ C0γ

ν1
j as j → ∞ for some C0 > 0, the situation is complicated. This is because
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the scalogram is the sum of two terms of same order, one converging in L2 to a Hermite
random variable, the other converging only in law to a Gaussian random variable.

Proof. This theorem is proved in Section 7.2. �

We now consider the case where q1 is greater than the critical exponent q∗1 .

Theorem 3.3. Suppose that Assumptions A hold with M ≥ K+d. Suppose moreover that the
Hermite expansion of G satisfies (36) and assume that q1 ≥ q∗1, where q

∗
1 is defined in (37).

Then two limits of the multidimensional scalogram Sn,j in (19), suitably normalized, are
possible :

(a) If nj ≪ γν2j then as j, nj → ∞,

n
1/2
j γ

−(2d+2K)
j Snj ,j

(L)→ c21N (0,Γ) ,

where Γ is as in Theorem 3.2 (a).
(b) If γν2j ≪ nj then as j, nj → ∞,

n1−2d
j γ

−2(δ(q1)+K)
j Sn,j

(L)→
c2q1

(q1 − 1)!
(2π)q1−1 [f∗(0)]q1 Lq1−1 Z2,d(1) .

Remark 3.2. As in the case of Theorem 3.2, the case where nj ∼ C0γ
ν2
j as j → ∞, seems

quite complicated to deal with.

Proof. This theorem is proved in Section 7.2. �

Example. We now illustrate Theorem 3.2 and 3.3. Our setting is still that of Moulines et al.
[2007] as above.

The memory parameter d is assumed to belong to (3/8, 1/2). Consider the case where

G = H1 +Hq1 ,

with 3 < q1 < 1/(1 − 2d). We will prove in the sequel that the wavelet coefficients of Y can
be expanded as

Wj,k =W
(1)
j,k +W

(q1)
j,k ,

where W
(1)
j,k is Gaussian and W

(q1)
j,k belongs to the chaos of order q1. Then,

W 2
j,k = [W

(1)
j,k ]

2 + [W
(q1)
j,k ]2 + 2W

(1)
j,kW

(q1)
j,k .

The empirical mean of the terms [W
(1)
j,k ]

2 behaves as in the Gaussian case and is asymptotically

Gaussian. The empirical mean of the terms [W
(q1)
j,k ]2 behaves as in the case G = Hq1 with

q1 ≥ 2 and is asymptotically Rosenblatt. Finally the empirical mean of the terms 2W
(1)
j,kW

(q1)
j,k

belongs to the chaos of order q1 − 1 > 2. The asymptotic behavior of the scalogram then
depends on which of the three terms is leading.

To see what happens, let N be as before the number of observations and assume that
γj = 2j . Let nj ∼ N2−j as j → ∞ as in (34). Distinguish two cases : q1 < q∗1 and q1 ≥ q∗1
where q∗1 is defined in (37).

If q1 < q∗1, the three possibilities stated in Theorem 3.2 can occur :

• if 2−j(ν1+1)N → 0 as N, j → ∞, then the term corresponding to [W
(1)
j,k ]

2 is leading

and the scalogram Snj ,j of the process {Yt}t∈Z is asymptotically Gaussian (case (c)).
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• if 2−j(ν1+1)N → ∞ and 2−j(ν3+1)N → 0 as N, j → ∞, then the term corresponding

to 2W
(1)
j,kW

(q1)
j,k is leading and the scalogram Snj ,j of {Yt} belongs asymptotically to

the chaos of order q1 − 1 > 2 (case (b)).

• if 2−j(ν3+1)N → ∞ as N, j → ∞, then the term corresponding to [W
(q1)
j,k ]2 with q1 > 3

is leading and the scalogram Snj ,j of {Yt} is asymptotically Rosenblatt (case (a)).

If we now assume that q1 ≥ q∗1, we are in the setting of Theorem 3.3 and the term corre-

sponding to 2W
(1)
j,kW

(q1)
j,k is always negligible. Then only two different situations can occur :

• if 2−j(ν2+1)N → 0 as N, j → ∞, then the term corresponding to [W
(1)
j,k ]

2 is leading

and the scalogram Snj ,j of {Yt} is asymptotically Gaussian (case (a)).

• if 2−j(ν2+1)N → ∞ as N, j → ∞, then the term corresponding to [W
(q1)
j,k ]2 is leading

and the scalogram Snj ,j of {Yt} is asymptotically Rosenblatt (case (b)).

4. The basic decomposition

Our goal is to investigate the asymptotic behavior of Snj ,j as defined in (19) when j →
+∞. As in Clausel et al. [2011b], our main tool will be the Wiener-Itô chaos expansion

of Snj ,j which involves multiple stochastic integrals Îq, q = 1, 2, . . . . These are defined in
Appendix A. In this case, the situation is more complex than in the case G = Hq0 since
as proved in Clausel et al. [2011a], the wavelet coefficients Wj,k, defined in (18), admit an
expansion into Wiener chaos as follows :

Wj,k =
∞∑

q=1

cq
q!
W

(q)
j,k , (40)

where W
(q)
j,k is a multiple integral of order q. Then, using the same convention as in (20), we

have

W2
j,k =

∞∑

q=1

(
cq
q!

)2 (
W

(q)
j,k

)2
+ 2

∞∑

q′=2

q′−1∑

q=1

cq
q!

cq′

q′!
W

(q)
j,kW

(q′)
j,k , (41)

where the convergence of the infinite sums hold in L1(Ω) sense.

Each W
(q)
j,k is a multiple integral of order q of some multidimensional kernel f

(q)
j,k , that is

W
(q)
j,k = Îq(f

(q)
j,k ) . (42)

Now, using the product formula for multiple stochastic integrals (125), one gets, as shown in
Proposition 4.1 that, for any (n, j) ∈ N2,

Sn,j =
1

n

n−1∑

k=0

W2
j,k − E[W2

j,0]

=

∞∑

q=1

(
cq
q!

)2 q−1∑

p=0

p!

(
q

p

)2

(2π)pS
(q,q,p)
n,j

+ 2

∞∑

q′=2

q′−1∑

q=1

cq
q!

cq′

q′!

q∑

p=0

(2π)p p!

(
q

p

)(
q′

p

)
S
(q,q′,p)
n,j , (43)
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where, for all q, q′ ≥ 1 and 0 ≤ p ≤ min(q, q′), S
(q,q′,p)
n,j is of the form

S
(q,q′,p)
n,j = Îq+q′−2p(g

(q,q′,p)
n,j ) . (44)

We call q + q′ − 2p the order of the summand S
(q,q′,p)
n,j . For any n, j, q, q′, p, the function

g
(q,q′,p)
n,j (ξ), ξ = (ξ1, . . . , ξq+q′−2p) ∈ Rq+q′−2p is defined for every p, q, q′ as

g
(q,q′,p)
n,j (ξ) =

1

n

n−1∑

k=0

(
f
(q)
j,k⊗pf

(q′)
j,k

)
, (45)

where the operation ⊗p is defined in (126) for each entry. The expansion in Wiener chaos of

Sn,j implies that

Sn,j = c21S
(1,1,0)
n,j +Σ

(0)
n,j +Σ

(1)
n,j +Σ

(2)
n,j +Σ

(3)
n,j , (46)

with

Σ
(0)
n,j =

∑

ℓ∈L, qℓ 6=1

c2qℓ
(qℓ!)2

qℓ−1∑

p=0

p!

(
qℓ
p

)2

(2π)p S
(qℓ,qℓ,p)
n,j , (47)

Σ
(1)
n,j = 2

∑

(ℓ1,ℓ2)∈J

cqℓ1
qℓ1 !

cqℓ2
qℓ2 !

qℓ1∑

p=0

p!

(
qℓ1
p

)(
qℓ2
p

)
(2π)p S

(qℓ1 ,qℓ2 ,p)

n,j , (48)

Σ
(2)
n,j = 2

∑

ℓ∈L,ℓ≥m0

c1cqℓ
qℓ!

1∑

p=0

p!

(
1

p

)(
qℓ
p

)
(2π)p S

(1,qℓ,p)
n,j ,

= 2
∑

ℓ∈L,ℓ≥m0

(
c1cqℓ
qℓ!

S
(1,qℓ,0)
n,j +

2πc1cqℓ
(qℓ − 1)!

S
(1,qℓ,1)
n,j

)
, (49)

Σ
(3)
n,j = 2

∑

ℓ∈I

cqℓ
qℓ!

cqℓ+1

(qℓ + 1)!

qℓ∑

p=0

p!

(
qℓ
p

)(
qℓ + 1

p

)
(2π)p S

(qℓ,qℓ+1,p)
n,j . (50)

The sets L, I and J are defined in (21), (23) and (24) respectively and the index m0,
defined in (26), is such that qm0 ≥ 3.

Let us comment on the decomposition (46). The sumΣ
(0)
n,j contains terms of the form S

(q,q,p)
n,j

that is multiple integrals of order 2(q − p). Then this sum, after subtracting its expectation,
has only summands of order 2, 4, 6, . . . in the Wiener chaos.

The sum Σ
(1)
n,j contains multiple integrals of orders q+ q′− 2p with q 6= 1, q′ 6= 1, p ≤ q ∧ q′

and |q−q′| ≥ 2. That means that all the summands in Σ
(1)
n,j are of order greater than or equal

to 2.
The sum Σ

(2)
n,j contains multiple integrals of orders q+ q′−2p with q = 1, q′ ≥ qm0 ≥ 3 and

p = 0 or 1. All the summands in Σ
(2)
n,j are then of order greater than or equal to qm0 − 1 ≥ 2.

The last sum Σ
(3)
n,j contains terms of the form S

(q,q+1,p)
n,j , that is multiple integrals of order

q+(q+1)− 2p = 2q+1− 2p. When p = q, q+1+ q− 2q = 1, thus one can have components
in the first Wiener chaos, that is Gaussian terms.
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We will see that Σ
(0)
n,j + Σ

(1)
n,j will converge to a non-Gaussian limit, more precisely to a

random variable in the second Wiener chaos. The sum Σ
(2)
n,j will also converge to a non-

Gaussian limit, more precisely to a random variable in the Wiener chaos of order qm0 − 1.

Finally Σ
(3)
n,j will tend to a Gaussian limit.

Remark 4.1. It is the presence of Σ
(2)
n,j which creates the possibility of having as limit a

multiple integral of order greater than 2. Thus, starting with a process

G(Xt) = H1(Xt) +Hq1(Xt) ,

with q1 ≥ 4, then qm0 = q1 and one may obtain as limit of the scalogram a Hermite process
of order q1 − 1 ≥ 3.

Let us formalize the above decomposition of Sn,j and give a more explicit expression for

the function g
(q,q′,p)
n,j in (45). The next proposition is a generalization of Proposition 6.1

of Clausel et al. [2011b].

Proposition 4.1. For all j, {Wj,k}k∈Z is a weakly stationary sequence. Moreover, for any

(n, j) ∈ N2, Sn,j can be expressed as (43) where the infinite sums converge in the L1(Ω) sense.

The function g
(q,q′,p)
n,j (ξ), ξ = (ξ1, . . . , ξq+q′−2p) ∈ Rq+q′−2p, in (44), equals

g
(q,q′,p)
n,j (ξ) = Dn(γj{ξ1 + · · ·+ ξq+q′−2p})×

∏q+q′−2p
i=1 [

√
f(ξi)1(−π,π)(ξi)]

× κ̂
(p)
j (ξ1 + · · · + ξq−p, ξq−p+1 + · · ·+ ξq+q′−2p) .

(51)

Here f denotes the spectral density of the underlying Gaussian process X and

Dn(u) =
1

n

n−1∑

k=0

eiku =
1− einu

n(1− eiu)
, (52)

denotes the normalized Dirichlet kernel. Finally, for ξ1, ξ2 ∈ R, if p 6= 0,

κ̂
(p)
j (ξ1, ξ2) =

∫

(−π,π)p

(
p∏

i=1

f(λi)

)
ĥ
(K)
j (λ1+· · ·+λp+ξ1)ĥ(K)

j (λ1 + · · · + λp − ξ2) d
pλ , (53)

and, if p = 0,

κ̂
(p)
j (ξ1, ξ2) = ĥ

(K)
j (ξ1)ĥ

(K)
j (ξ2) . (54)

Notation. To simplify the notation, for any integer p and q1, . . . , qp ∈ Z+ we shall denote by
Σq1,...,qp , the Cq1+···+qp → Cp function defined, for all y = (y1, . . . , yq1+···+qp) ∈ Cq1+···+qp by

Σq1,...,qp(y) =




q1∑

i=1

yi,

q1+q2∑

i=q1+1

yi, . . . ,

q1+···+qp∑

i=q1+···+qp−1+1

yi


 . (55)

Note that, for p = 1, one simply has Σq(y) = y1 + · · · + yq.
With this notation, (44) and (53) become respectively

S
(q,q′,p)
n,j = Îq+q′−2p

(
Dn ◦ Σq+q′−2p(γj × ·)× [

√
f1(−π,π)]

⊗(q+q′−2p) × κ̂
(p)
j ◦ Σq−p,q′−p

)
,

(56)

κ̂
(p)
j (ξ1, ξ2) =

∫

(−π,π)p
f⊗p(λ) ĥ

(K)
j (Σp(λ) + ξ1)ĥ

(K)
j (Σp(λ)− ξ2) d

pλ , if p 6= 0, (57)
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where ◦ denotes the composition of functions, λ = (λ1, · · · , λp) and f⊗p(λ) = f(λ1) · · · f(λp)
is written as a tensor product.

Proof of Proposition 4.1. For sake of simplicity we can assume that W is a vector of length
m = 1 since the case m ≥ 2 can be deduced by applying the case m = 1 to each entries. We
must give an expansion in Wiener chaos of the one dimensional scalogram Sn,j − E(Sn,j) in
our setting. Using (10), (41), (42) and the product formula (125) of Proposition A.1, we have
as in Proposition 6.1 of Clausel et al. [2011b]

Sn,j =

∞∑

q,q′=1

cqcq′

q!q′!

q∧q′∑

p=0

(2π)pp!

(
q

p

)(
q′

p

)
Îq+q′−2p

(
g
(q,q′,p)
n,j

)
, (58)

where

g
(q,q′,p)
n,j =

1

n

n−1∑

k=0

f
(q)
j,k⊗pf

(q′)
j,k .

By (124),

f
(q)
j,k (ξ) = exp ◦Σq(ikγjξ)

(
ĥ
(K)
j ◦ Σq(ξ)

) (
f⊗q(ξ)

)1/2 1⊗q
(−π,π)(ξ) , ξ ∈ R

q . (59)

If q + q′ − 2p 6= 0, let ξ = (ξ1, · · · , ξq+q′−2p). As in Clausel et al. [2011b] using (126), we get

that g
(q,q′,p)
n,j is a function with q + q′ − 2p variables given by

g
(q,q′,p)
n,j (ξ) =

1

n

n−1∑

k=0

exp ◦Σq+q′−2p(ikγjξ)× [
√
f1(−π,π)]

⊗q+q′−2p(ξ)× κ̂
(p)
j ◦Σq−p,q′−p(ξ) .

The Dirichlet kernel Dn appears when one computes the sum 1
n

∑n−1
k=0 exp ◦Σq+q′−2p(ikγjξ).

This implies the formula (51).
In addition, the chaos of order zero appears in the expression (58) of Sn,j in the terms with

p = q = q′ since Îq+q′−2p = Î0. In this case, a similar argument as in Clausel et al. [2011b]
leads to

1

n

∞∑

q=1

c2q
(q!)2

n∑

k=1

E(|W (q)
j,k |2) =

∞∑

q=1

c2q
(q!)2

× E(|W (q)
j,0 |2) = E(|Wj,0|2) = E(Sn,j) ,

by (40) and (41). Therefore, in the univariate case m = 1, Sn,j = Sn,j − E(Sn,j) can be
expressed as stated in (43). The generalization to the case m ≥ 2 is straightforward. �

We prove in Section 6 that

• The leading term of Σ
(0)
n,j + Σ

(1)
n,j is

c2
q∗
0

(q∗0−1)!(2π)
q∗0−1S

(q∗0 ,q
∗

0 ,q
∗

0−1)
n,j (see Propositions 6.1

and 6.2) where

q∗0 =

{
q1 if q0 = 1,
q0 otherwise.

(60)

Note that S
(q∗0 ,q

∗

0 ,q
∗

0−1)
n,j always is in the 2nd Wiener chaos.

• The leading term of Σ
(2)
n,j is 2π

c1cqm0
(qm0−1)!S

(1,qm0 ,1)
n,j (see Propositions 6.3 and 6.4), which

is in the (qm0 − 1)-th Wiener chaos.
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• The leading term of Σ
(3)
n,j is 2

cqℓ0
cqℓ0+1

qℓ0
(2π)qℓ0S

(qℓ0 ,qℓ0+1,qℓ0)

n,j (see Propositions 6.5 and

6.6), which is Gaussian.

Hence, for the two classes of functions considered in Sections 3.1 and 3.2, we have to com-

pare at most four terms : S
(1,1,0)
n,j , S

(q∗0 ,q
∗

0 ,q
∗

0−1)
n,j , S

(qℓ0 ,qℓ0+1,p)

n,j , S
(1,qm0 ,1)
n,j which are respectively

asymptotically Gaussian, Rosenblatt, Gaussian and in the chaos of order qm0 − 1.
Our three theorems are based on the study of the asymptotic behavior of each sum (see

Section 6 below). We first establish some preliminary results.

5. Preliminary results

5.1. L2 bounds. To identify the leading terms, using the same approach than in Clausel et al.

[2011b] we will give an upper bound for the L2 norm of the multidimensional terms S
(q,q′,p)
n,j ,

q, q′, p defined in (44) and (56). Here, the main difficulty is that unlike the case whereG = Hq0 ,
we have to deal with an infinity of terms. We have also to obtain more precise bounds than
in Clausel et al. [2011b]. In the following, for any random vector Z, the L2(Ω) norm of Z is
denoted by

‖Z‖2 =
(
E
[
|Z|2

])1/2
. (61)

(Recall that |Z| denotes the Euclidean norm of Z.) Our goal in this section is to specify how

‖S(q,q′,p)
n,j ‖2 depends on q, q′ and p. The difficulty is that the sum Sn,j contains long–memory

and short–memory terms having then different normalization factors. To recover all the cases,
we shall use not only δ+(q) and δ(q) defined in (12) but also

δ−(q) = max(−δ(q), 0) , q ≥ 0 , (62)

so that δ = δ+ − δ− and δ+, δ− are nonnegative. In particular, δ(0) = δ+(0) = 1/2 and
δ−(0) = 0.

As in Clausel et al. [2011b], the expression (56) of S
(q,q′,p)
n,j involves the kernel κ̂

(p)
j defined

in (57) and we have to distinguish the two cases p 6= 0 and p = 0. The following notations
will be used in the sequel. For any s ∈ Z+ and d ∈ (0, 1/2), set

Λs(a) =
s∏

i=1

(ai!)
1−2d, ∀a = (a1, · · · , as) ∈ N

s . (63)

For any q, q′, p ≥ 0, set

α(q, q′, p) =

{
min

(
1− δ+(q − p)− δ+(q

′ − p), 12
)

if p 6= 0 ,
1
2 if p = 0 ,

(64)

β(q, p) = max

(
δ+(p) + δ+(q − p)− 1

2
, 0

)
. (65)

Notice that for any q ≥ 0, β(q, 0) = δ+(q). Define the function ε on Z+ as

ε(p) =

{
0 if for any s ∈ {1, · · · , p}, s(1− 2d) 6= 1 ,

1 if for some s ∈ {1, · · · , p}, s(1− 2d) = 1 .
(66)

The indexK is defined in (3) and the indexM is defined in (129), and, as noted in Appendix B,
the filter hj(t) has null moments of order 0, 1, . . . ,M − 1.

Proposition 5.1. Suppose that Assumptions A hold. Let ε be the function defined in (66).
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(i) There exists some C > 0 whose value depends only on d and f∗ such that for any
n, j ≥ 2 and any 0 ≤ p ≤ q ≤ q′

‖S(q,q′,p)
n,j ‖2 ≤ C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2n−α(q,q′,p) (log n)ε(q+q′−2p)

×γ2K+β(q,p)+β(q′,p)
j (log γj)

3ε(q′) .
(67)

(ii) In addition, assume that M ≥ K +max(δ+(q), δ+(q
′)). Then there exists some C > 1

whose values depend only on d and f∗ such that for any q, q′, n, j

‖S(q,q′,0)
n,j ‖2 ≤ C

q+q′

2 Λ1(q)
1/2Λ1(q

′)1/2n−1/2γ
2K+δ+(q)+δ+(q′)
j (log γj)

ε(q′) . (68)

Proof. As above, we can take m = 1 without loss of generality. In what follows, C,C1, · · ·
are positive constants that may change from line to line. The following function ε′ defined on
R+ is used in the sequel,

ε′(a) = 1{1}(a) = {ε′(a) = 1 if a = 1 ,

ε′(a) = 0 otherwise.
(69)

We first observe that if p = 0, the bound (67) is a consequence of (68). This follows by
observing that Λ2(q, 0) = Λ1(q), α(q, q

′, 0) = 1/2, β(q, 0) = δ+(q) and that the log exponents
in (67) are all larger than that in (68). Hence, to prove the result, we show that (i) holds for
p > 0 and then prove (ii), successively.
Proof of (i) for p > 0. Set r = q − p and r′ = q′ − p. The starting point of the proof is the

integral expression of S
(q,q′,p)
n,j given by (56). Thereafter we follow the same approach as in the

proof of Proposition 7.1 of Clausel et al. [2011b], using Lemma 8.3 to bound the kernel κ̂
(p)
j

involved in the integral expression of S
(q,q′,p)
n,j instead of Lemma 10.1 of Clausel et al. [2011b],

replacing 2r, (r, r), δ(p) with r + r′, (r, r′), δ+(p) and adding if necessary a logarithmic
correction.

We obtain the following inequality, similar to (7.2) and (7.3) in Clausel et al. [2011b],

E

[∣∣∣S(q,q′,p)
n,j

∣∣∣
2
]
≤ C2p

1 (p!)2(1−2d)γ
−2+2δ(r)+2δ(r′)+4δ+(p)
j γ4Kj (log γj)

2ε(p)In,j , (70)

where, for any j, n,

In,j ≤
∫ γjπr

−γjπr

∫ γjπr′

−γjπr′

Jr,γjπ(u1; 2d1r)Jr′,γjπ(v1; 2d1r′)du1dv1

(1 + n |{u1 + v1}|)2
(
1 + γj

∣∣∣{u1
γj
}
∣∣∣
)2δ+(p) (

1 + γj

∣∣∣{v1
γj
}
∣∣∣
)2δ+(p)

,

and where Jr,γjπ(u1; 2d1r) and Jr′,γjπ(v1; 2d1r′) are defined in Lemma 8.1.
We now use inequality (105) of Lemma 8.1 successively with p = r, a = γjπ, s1 = u1 and

p = r′, a = γjπ, s1 = v1. As in (7.4) in Clausel et al. [2011b], we get that

In,j ≤ Cr+r′

2 (r!r′!)1−2dγ
2δ−(r)+2δ−(r′)
j (log γj)

ε(r)+ε(r′)+2ε(p)

×
∫

R2

1(−πr,πr)(
u1
γj
)1(−πr′,πr′)(

v1
γj
)|u1|−2δ+(r)|v1|−2δ+(r′)du1 dv1

(1 + n |{u1 + v1}|)2
(
1 + γj

∣∣∣{u1
γj
}
∣∣∣
)2δ+(p) (

1 + γj

∣∣∣{v1
γj
}
∣∣∣
)2δ+(p)

,

where C2 ≥ 1 denotes a constant depending only on d.
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The next step relies on the inequality |{x}| ≤ |x| on R and on the 2π–periodicity of x 7→ {x}.
We then get that

In,j ≤ Cr+r′

3 (r!r′!)1−2dγ
−2δ−(r)−2δ−(r′)
j (log γj)

ε(r)+ε(r′)+2ε(p)Ĩn,j ,

with

Ĩn,j =

∫

(−γjπ,γjπ)2

|u1|−2δ+(r)|v1|−2δ+(r′)du1 dv1

(1 + n |{u1 + v1}|)2(1 + |u1|)2δ+(p)(1 + |v1|)2δ+(p)
,

which corresponds to (7.5) in Clausel et al. [2011b].

The bound of Ĩn,j is obtained using the decomposition Ĩn,j = A+ 2B with

A =

∫

∆
(0)
j

|u1|−2δ+(r)|v1|−2δ+(r′)du1 dv1
(1 + n |{u1 + v1}|)2(1 + |u1|)2δ+(p)(1 + |v1|)2δ+(p)

,

and

B =

γj∑

s=1

∫

∆
(s)
j

|u1|−2δ+(r)|v1|−2δ+(r′)du1 dv1

(1 + n |{u1 + v1}|)2(1 + |u1|)2δ+(p)(1 + |v1|)2δ+(p)
,

where

∆
(s)
j = {(u1, v1) ∈ (−γjπ, γjπ)2, |u1 + v1 − 2πs| ≤ π} ,

with s ∈ {−γj , · · · , γj}. This decomposition is similar to the one used in the proof of Propo-
sition 7.1 in Clausel et al. [2011b] and is obtained by partitioning (−γjπ, γjπ)2 using the

domains ∆
(s)
j .

We now bound separately A and B, as in Clausel et al. [2011b]. We get that there exists
some C > 0 such that if 2δ+(r) + 2δ+(r

′) > 1,

A ≤ Cn−2+2δ(r)+2δ(r′) ,

and if 2δ+(r) + 2δ+(r
′) ≤ 1,

A ≤ Cn−1(log n)ε
′(2δ+(r)+2δ+(r′))γ

max(1−2δ+(r)−2δ+(r′)−4δ+(p),0)
j (log γj)

ε′(2δ+(r)+2δ+(r′)+4δ+(p)) .

where the function ε′ has been defined in (69). Further for some C > 0

B ≤ Cn−1γ
max(1−2δ+(r)−2δ+(p),0)+max(1−2δ+(r′)−2δ+(p),0)
j (log γj)

ε′(2δ+(r)+2δ+(p))+ε′(2δ+(r′)+2δ+(p)) .

As in Clausel et al. [2011b], we deduce that there exists some C > 0 depending only on
δ+(r), δ+(r

′), δ+(p), d such that

Ĩn,j ≤ Cn−min(2(1−δ+(r)−δ+(r′)),1)(log n)ε
′(2δ+(r)+2δ+(r′))

× γ
max(1−2(δ+(r)+δ+(p)),0)+max(1−2(δ+(r′)+δ+(p)),0)
j (log γj)

ε′(2δ+(r)+2δ+(p))+ε′(2δ+(r′)+2δ+(p)) .

Observe now that for any fixed d, there exists only a finite number of possible values for
δ+(r), δ+(r

′), δ+(p) and then a finite number of possible values for C. Then, provided we
replace C by its maximum possible value, we can assume that C does not depend on δ+(r),
δ+(r

′), δ+(p).
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The bound on Ĩn,j and (70) yields

‖S(q,q′,p)
n,j ‖2 ≤C

q+q′

2 Λ2(q − p, p)1/2Λ2(q
′ − p, p)1/2 γ2Kj n−min(1−δ+(q−p)−δ+(q′−p),1/2)

× γ
max(1/2−δ+(p)−δ+(q−p),0)+max(1/2−δ+(p)−δ+(q′−p),0)
j

× γ
−1+δ+(q−p)+δ+(q′−p)+2δ+(p)
j

× (log n)ε
′(2δ+(r)+2δ+(r′))

(log γj)
[ε′(2δ+(r)+2δ+(p))+ε′(2δ+(r′)+2δ+(p))+ε(r)+ε(r′)+2ε(p)]/2 ,

Inequality (67) corresponds to this bound with exponents of γj , log n and log γj simplified as
follows.

The exponent of γj is obtained by observing that −1 + δ+(q − p) + δ+(q
′ − p) + 2δ+(p) =

(−1/2+δ+(q−p)+δ+(p))+(−1/2+δ+(q
′−p)+δ+(p)) and using max(−a, 0)+a = max(a, 0)

with a = −1/2 + δ+(q − p) + δ+(p) and a = −1/2 + δ+(q
′ − p) + δ+(p) successively.

The log exponents are obtained by observing that, since r ≤ r′, ε(r) + ε(r′) + 2ε(p) ≤
2(ε(r′) + ε(p)) ≤ 4ε(r′ ∨ p). In addition ε′(2δ+(m) + 2δ+(m

′)) = 0 iff m +m′ 6= 1/(1 − 2d)
and equals 1 otherwise. Thus ε′(2δ+(m) + 2δ+(m

′)) ≤ ε(m+m′) and we get

ε′(2δ+(r) + 2δ+(p)) ≤ ε(q), and ε′(2δ+(r
′) + 2δ+(p)) ≤ ε(q′) .

Finally, since ε is non–decreasing and q ≤ q′, r′ ∨ p ≤ q′,

ε′(2δ+(r) + 2δ+(p)) + ε′(2δ+(r
′) + 2δ+(p)) + 4ε(r′ ∨ p) ≤ ε(q) + ε(q′) + 4ε(q′) ≤ 6ε(q′) .

Proof of (ii). Here, p = 0 and thus κ̂
(p)
j = ĥ

(K)⊗2
j . The same approach as in the proof of

Proposition 7.2 in Clausel et al. [2011b] leads to the following inequality which corresponds
to (7.12) in Clausel et al. [2011b] : there exists C > 0 not depending on n, j, q, q′ such that

E[|S(q,q′,0)
n,j |2] ≤ C γ

−(q+q′)(1−2d)
j γ

2(2K+1)
j In,j = Cγ

2(δ(q)+δ(q′)+2K)
j In,j , (71)

where

In,j =

∫ qγjπ

u=−qγjπ

∫ q′γjπ

v=−q′γjπ
g(u, v)Jq,γjπ(u; d, · · · , d)Jq′,γjπ(v; d, · · · , d)dudv1 ,

with Jm,a defined as in Lemma 8.1 and with g(u, v) defined for all (u, v) ∈ R2 by,

g(u, v) = (1 + |n{u+ v}|)−2 |γj{u/γj}|2(M−K) · |γj{v/γj}|2(M−K)

[(1 + |γj{u/γj}|)(1 + |γj{v/γj}|)]2(M+α)
. (72)

As in the case p 6= 0, we can use the bound (105) of Jm,a and the inequality |{u}| ≤ |u|.
We get that

In,j ≤ Cq+q′(q!q′!)1−2dγ
2δ−(q)−δ−(q′))
j

×
∫ qγjπ

u=−qγjπ

∫ q′γjπ

v=−q′γjπ

∣∣∣γj{ u
γj
}
∣∣∣
2M−2K−2δ+(q) ∣∣∣γj{ v

γj
}
∣∣∣
2M−2K−2δ+(q′)

dudv

(1 + n|{u+ v}|)2
(
1 +

∣∣∣γj{ u
γj
}
∣∣∣
)2(M+α) (

1 +
∣∣∣γj{ v

γj
}
∣∣∣
)2(M+α)

.

As in the proof of Proposition 7.2 of Clausel et al. [2011b], we then obtain that

In,j ≤ Cq+q′

1 (q!q′!)1−2dn−1γ
−2(δ−(q)+δ−(q′))
j . (73)
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The conclusion follows from (71) and (73). �

5.2. Asymptotic behavior of the leading terms. We now investigate the exact asymp-
totic behavior of the terms that will turn out to be leading in the sum (43).

Let us first suppose that the bounds in Proposition 5.1 are sharp enough to determine
which terms are leading. Since γj → ∞ and n = nj → ∞, those for which the bounds
have the largest exponents β(q, p) and β(q′, p) and the lowest exponent α(q, q′, p) are more
likely to dominate, in particular, if δ+(p), δ+(q − p), δ+(q

′ − p), δ+(p) + δ+(q − p) − 1/2,
δ+(p) + δ+(q

′ − p)− 1/2 and 1/2 − (1 − δ+(q − p)− δ+(q
′ − p)) are all positive. Using (15),

if p > 0, this happens for 0 < p, q − p, q′ − p, q, q′, q − p+ q′ − p < 1/(1 − 2d), that is (taking
q ≤ q′ without loss of generality),

0 < p ≤ q ≤ q′ < 1/(1− 2d) and 0 < q + q′ − 2p < 1/(1 − 2d) . (74)

In particular, for such a triplet (p, q, q′), we have ε(q′) = ε(q + q′ − 2p) = 0 so that bounds
in (67) and (68) involving logarithms will not appear in these terms. We shall check afterwards
(in Section 6) that indeed, in all the cases we consider, either such a term is leading in the

sum (43), or the leading term is S
(1,1,0)
nj ,j

(q = q′ = 1 and p = 0). The bounds established in

Proposition 5.1 will be sharp enough for this goal.

This is why, in the following, we shall only determine the asymptotic behaviors of S
(1,1,0)
nj ,j

and of S
(q,q′,p)
nj ,j

under Condition (74), when j, nj → ∞.

Proposition 5.2. Suppose that Assumptions A hold with M ≥ K + δ(1) = K + d and that
γj is even for all j. Let (nj) be any diverging sequence of integers. Then as j → ∞,

n
1/2
j γ

−2(d+K)
j S

(1,1,0)
nj ,j

(L)→ N (0,Γ) , (75)

where Γ is defined by (39).

Proof. This is a direct application of Theorem 3.1 case (a) in Clausel et al. [2011b]. �

We now consider the case where Condition (74) is satisfied.

Proposition 5.3. Let q, q′ and p be non-negative integers such that (74) holds. Assume that
Assumptions A hold with M ≥ K and let (nj) be any diverging sequence of integers. Then,
as j → ∞,

(njγj)
1−δ(q−p)−δ(q′−p)γ

−2(K+δ(p))
j S

(q,q′,p)
nj ,j

(L)→ [f∗(0)](q+q′)/2 Lp Zq+q′−2p,d(1) , (76)

where Zq+q′−2p,d is the Hermite process defined in (28) and Lp is defined in (33).

Proof. The proof follows the same line as the proof of Proposition 8.1 in Clausel et al. [2011b].
Therefore we only explain how to adapt this proof to our setting. Set r = q+q′−2p. Using (56)
and that, for all g ∈ L2(Rr),

Îr(g)
d
= (nγj)

−r/2Îr(g(·/(nγj))) ,
we have

S
(q,q′,p)
n,j

d
= (nγj)

−r/2Îr

(
Dn ◦ Σq+q′−2p(·/n) × [1(−γjπ,γjπ)]

⊗r(·/n)× fj

)
, (77)

where, for all ξ ∈ Rr,

fj(nγjξ) =
√
f
⊗r

(ξ)× κ̂
(p)
j ◦Σq−p,q′−p(ξ) .
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The rest of the proof consists in proving the L2 convergence of the Itô integral in (77),
adequately normalized. This is done in the proof of Proposition 8.1 in Clausel et al. [2011b]
with q − p = q′ − p = 1 (hence r = 2). The same proof applies in our setting but results in
a multiple integral of order r with r ≥ 2. In particular, if r > 2 the asymptotic limit is not
Rosenblatt but an r-order Hermite process. �

6. Leading terms

Recall the decomposition (46) of Sn,j using sums Σ
(0)
n,j, Σ

(1)
n,j, Σ

(2)
n,j and Σ

(3)
n,j. The aim of

this section is to identify the leading terms of the three following sums : Σ
(0)
nj ,j

+Σ
(1)
nj ,j

, Σ
(2)
nj ,j

,

Σ
(3)
nj ,j

under the conditions specified in Sections 3.1 and 3.2.

6.1. Leading term of Σ
(0)
nj ,j

+ Σ
(1)
nj ,j

. Recall that the two sums Σ
(0)
nj ,j

,Σ
(1)
nj ,j

are defined in

equations (47), (48) and that q∗0, defined in (60), equals q1 if q0 = 1 and equals q0 otherwise.

Therefore q0 ≥ 2. We shall prove that, if q∗0 < 1/(1 − 2d), the main term in Σ
(0)
nj ,j

+Σ
(1)
nj ,j

is
c2
q∗0

(q∗0−1)!(2π)
q∗0−1S

(q∗0 ,q
∗

0 ,q
∗

0−1)
n,j , and has rate n1−2d

j γ
−2(δ(q∗0 )+K)
j . The following proposition is used

to show that the remainder terms are negligible.

Proposition 6.1. Suppose that Assumptions A hold with M ≥ K + δ(q∗0) and that

q∗0 < 1/(1 − 2d) ,

where q∗0 is defined in (60). Let (nj) be a diverging sequence. Then, when j → ∞,

n1−2d
j γ

−2(δ(q∗0 )+K)
j




q∗0−2∑

p=0

c2q∗0
(q∗0 !)

2
p!

(
q∗0
p

)2

(2π)p ‖S(q∗0 ,q
∗

0 ,p)
nj ,j

‖2


→ 0 , (78)

n1−2d
j γ

−2(δ(q∗0 )+K)
j


 ∑

ℓ∈L,qℓ>q∗0

c2qℓ
(qℓ!)2

qℓ−1∑

p=0

p!

(
qℓ
p

)2

(2π)p ‖S(qℓ,qℓ,p)
nj ,j

‖2


→ 0 , (79)

n1−2d
j γ

−2(δ(q∗0 )+K)
j


 ∑

(ℓ1,ℓ2)∈J

cqℓ1
qℓ1 !

cqℓ2
qℓ2 !

qℓ1∑

p=0

p!

(
qℓ1
p

)(
qℓ2
p

)
(2π)p ‖S(qℓ1 ,qℓ2 ,p)

nj ,j
‖2


→ 0 . (80)

Proof. We first note that, since q∗0 ≥ 2 by definition and q∗0 < 1/(1 − 2d) by assumption, we
have 1/4 < d < 1/2.

As in the proof of Proposition 5.1, we prove the result in the case where m = 1 without
loss of generality. We thus use non bold faced symbols.

We first prove (78). Since there is a finite number of terms in the sum appearing on the left-
hand side of (78), it is sufficient to show that each term converges to 0. Let p ∈ {0, . . . , q∗0−2}.
We apply Proposition 5.1 with q = q′ = q∗0. Since q∗0 < 1/(1 − 2d) and thus ε(q∗0) = 0,
Inequality (67) reads

γ
−2(δ(q∗0 )+K)
j ‖S(q∗0 ,q

∗

0 ,p)
n,j ‖2 ≤ Cq∗0Λ2(q

∗
0 − p, p)n−α(q∗0 ,q

∗

0 ,p) (log n)ε(2(q
∗

0−p)) γ
2(β(q∗0 ,p)−δ(q∗0 ))
j .

By (109) and (112) in Lemma 8.2, we have α(q∗0 , q
∗
0, p) ≥ min(2(1 − 2d), 1/2) and β(q∗0 , p) ≤

δ+(q
∗
0) = δ(q∗0). Hence,

γ
−2(δ(q∗0 )+K)
j ‖S(q∗0 ,q

∗

0 ,p)
n,j ‖2 ≤ Cq∗0Λ2(q

∗
0 − p, p)n−min(2(1−2d),1/2) (log n)ε(2(q

∗

0−p)) .
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Since d ∈ (1/4, 1/2), we have n−min(2(1−2d),1/2)(log n)ε(2(q
∗

0−p)) = o(n2d−1). Thus Inequal-
ity (78) holds.

We now prove (79). We apply (67), in the cases q = q′ = qℓ, 0 ≤ p ≤ qℓ−2 and q = q′ = qℓ,
p = qℓ − 1, successively. Then for some C > 0, for any ℓ ∈ L such that qℓ > q∗0 and for any
0 ≤ p ≤ qℓ − 2 one has,

γ
−2(δ(q∗0 )+K)
j ‖S(qℓ,qℓ,p)

n,j ‖2 ≤ CqℓΛ2(qℓ − p, p)n−α(qℓ,qℓ,p) (log n)ε(2(qℓ−p)) γ
2(β(qℓ,p)−δ(q∗0))
j (log γj)

3 .

On the other hand, since d > 1/4, ε(2) = 0. Thus in the case where p = qℓ−1, the exponent of
log n vanishes. Moreover, in this case, by (110) in Lemma 8.2, α(qℓ, qℓ, p) = min(1−2d, 1/2) =
1− 2d. In the alternative case p < qℓ − 1, we use (109) in Lemma 8.2, which gives

n−α(qℓ,qℓ,p) (log n)ε(2(qℓ−p)) ≤ n−min(2(1−2d),1/2) (log n)ε(2(qℓ−p)) ≤ n2d−1 ,

for n large enough, since 2(1 − 2d) > 1 − 2d and 1/2 > 1 − 2d. Hence in all the cases, the
terms in n can be bounded by C ′ n2d−1. As for the terms in γj , we use that, by (112) in
Lemma 8.2, β(qℓ, p) ≤ δ+(qℓ) ≤ δ+(q

∗
0 +1), since qℓ ≥ q∗0 +1 and δ+ is non-increasing. Hence

we get that

γ
−2(δ(q∗0 )+K)
j ‖S(qℓ,qℓ,p)

n,j ‖2 ≤ CqℓΛ2(qℓ − p, p)n2d−1 γ
2(δ+(q∗0+1)−δ(q∗0 ))
j (log γj)

3 ,

where C > 0 may have changed from the previous line. Hence, summing over ℓ ∈ L such that
qℓ > q∗0 and all p ∈ {0, . . . , qℓ − 1}, we get that

n1−2dγ
−2(δ(q∗0 )+K)
j


∑

qℓ>q∗0

qℓ−1∑

p=0

c2qℓ
(qℓ!)2

p!

(
qℓ
p

)2

(2π)p ‖S(qℓ,qℓ,p)
n,j ‖2




≤ γ
2(δ+(q∗0+1)−δ(q∗0 ))
j (log γj)

3
+∞∑

ℓ=1

c2qℓ
(qℓ!)2

(2πC)qℓ
qℓ−1∑

p=0

p! (2π)p
(
qℓ
p

)2

Λ2(qℓ − p, p) . (81)

By definition of Λ2 in (63), for any integer q and any 0 ≤ p ≤ q,

p!

(
q

p

)2

Λ2(q − p, p) = (p!)−2d(q!)2((q − p)!)−1−2d ≤ (q!)2(p!)−2d . (82)

Hence the sum over p in the right-hand side of (81) is bounded by (qℓ!)
2 up to a multiplicative

constant. In turn, the sum over ℓ ≥ 1 is bounded, up to a multiplicative constant, by∑+∞
ℓ=1 c

2
qℓ
(2πC)qℓ , which is finite by Condition (29). Finally we observe that, since δ(q∗0) >

δ(q∗0 + 1) and δ(q∗0) > 0, we have

γ
2(δ+(q∗0+1)−δ(q∗0 ))
j (log γj)

3 → 0 ,

as γj → ∞. Hence Inequality (79) holds.
We finally prove that (80) holds. Inequality (67) for (ℓ1, ℓ2) ∈ J with q = qℓ1 , q

′ = qℓ2 and
p ≤ qℓ1 implies that

γ
−2(δ(q∗0 )+K)
j ‖S(qℓ1 ,qℓ2 ,p)

n,j ‖2 ≤ C
qℓ1

+qℓ2
2 Λ2(qℓ1 − p, p)1/2Λ2(qℓ2 − p, p)1/2

× n−α(qℓ1 ,qℓ2 ,p) (log n)ε(qℓ1+qℓ2−2p) γ
β(qℓ1 ,p)+β(qℓ2 ,p)−2δ(q∗0 )

j (log γj)
3 . (83)

We first bound the terms that depend on n. First suppose that p = qℓ1 and qℓ2 = qℓ1 + 2.
In this case, the exponent of log n vanishes, since ǫ(2) = 0 for d > 1/4, and by (107) in
Lemma 8.2, the exponent of n α(qℓ1 , qℓ2 , p) ≥ 1 − 2d. Hence, in this case, the terms in n are
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bounded by n2d−1. Otherwise, if p < qℓ1 or qℓ2 > qℓ1 + 2, we observe that for (ℓ1, ℓ2) ∈ J , we
have p ≤ qℓ2 − 3 and hence, by definition of α in (64) and since δ+ is non-increasing,

α(qℓ1 , qℓ2 , p) ≥ 1/2 − δ+(3) = min(1/2, 1/2 − (3d − 1)) > 1− 2d ,

since 1/4 < d < 1/2. Whatever the exponent of log n, we again obtain that the terms in n
are bounded by n2d−1, up to a multiplicative constant:

sup
(ℓ1,ℓ2)∈J,0≤p≤qℓ1

n−α(qℓ1 ,qℓ2 ,p) (log n)ε(qℓ1+qℓ2−2p) = O
(
n2d−1

)
. (84)

We now bound the terms that depend on γj in (83). By (112) in Lemma 8.2, we have
β(q, p) ≤ δ+(q) for 0 ≤ p ≤ q. Thus β(qℓ1 , p) + β(qℓ2 , p)− δ(q∗0) ≤ δ+(qℓ1) + δ+(qℓ2)− 2δ(q∗0).
Since δ is non–increasing, qℓ1 ≥ q∗0 and qℓ2 ≥ qℓ1 +2 we deduce that δ+(qℓ1) ≤ δ+(q

∗
0) = δ(q∗0)

and δ+(qℓ2) ≤ δ+(q
∗
0+2) < δ(q∗0). Hence the exponent of γj is bounded by a negative constant

and

sup
(ℓ1,ℓ2)∈J,0≤p≤qℓ1

γ
β(qℓ1 ,p)+β(qℓ2 ,p)−δ(q∗0 )

j (log γj)
3 → 0 as j → ∞ . (85)

In view of (83), (84) and (85), the proof of (80) follows from the bound

∑

(ℓ1,ℓ2)∈J

|cqℓ1 |
qℓ1 !

|cqℓ2 |
qℓ2 !

C
qℓ1

+qℓ2
2

qℓ1∑

p=0

p! (2π)p
2∏

i=1

(
qℓi
p

)
[Λ2(qℓi − p, p)]1/2 <∞ , (86)

which we now prove. By the Cauchy–Schwartz inequality, we have

qℓ1∑

p=0

p! (2π)p
2∏

i=1

(
qℓi
p

)
[Λ2(qℓi − p, p)]1/2 ≤

2∏

i=1




qℓ1∑

p=0

(p!)2 (2π)p
(
qℓi
p

)2

Λ2(qℓi − p, p)




1/2

.

We may replace qℓ1 by qℓi in the previous upper bound, since qℓ1 ≤ qℓ2 . Likewise the sum
over (j1, j2) ∈ J in (86) is bounded by the sum over (j1, j2) ∈ N2. Hence (86) follows from

∞∑

ℓ=0

|cqℓ |
qℓ!

Cqℓ/2




qℓ∑

p=0

(p!)2 (2π)p
(
qℓ
p

)2

Λ2(qℓ − p, p)




1/2

<∞ ,

which is a straightforward consequence of (82) and the fact that, by Condition (29),

+∞∑

ℓ=1

|cqℓ | (2πC)qℓ/2 <∞ .

This concludes the proof. �

We now focus on the leading term of the sum Σ
(0)
nj ,j

+Σ
(1)
nj ,j

.

Proposition 6.2. Under the same assumptions as Proposition 6.1, we have, as j → ∞,

n1−2d
j γ

−2(δ(q∗0 )+K)
j

(
Σ

(0)
nj ,j

+Σ
(1)
nj ,j

)
(L)−→

[
c2q∗0

(2π)q
∗

0−1

(q∗0 − 1)!
f∗(0)q

∗

0Lq∗0−1

]
Z2,d(1) . (87)
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Proof. We apply Proposition 5.3 with q = q′ = q∗0 and p = q∗0 − 1. Since

2δ(1) + 2δ(q∗0 − 1)− 1 = 2δ(q∗0) ,

we get that

n1−2d
j γ

−2(δ(q∗0 )+K)
j

c2q∗0
(2π)q

∗

0−1

(q∗0 − 1)!
S
(q∗0 ,q

∗

0 ,q
∗

0−1)
n,j

(L)→
[
c2q∗0

(2π)q
∗

0−1

(q∗0 − 1)!
f∗(0)q

∗

0Lq∗0−1

]
Z2,d(1) . (88)

The left-hand side in (88) corresponds to the term qℓ = q∗0 and p = q∗0 − 1 of Σ
(0)
nj ,j

in (47).

The terms of Σ
(0)
nj ,j

with qℓ = q∗0 and p < q∗0 − 1 are gathered in the left-hand side of (78).

The terms of Σ
(0)
nj ,j

with qℓ > q∗0 are gathered in the left-hand side of (79). Finally the left-

hand side of (80) corresponds to Σ
(1)
nj ,j

in (47). Hence, by Proposition 6.1, all these terms are

negligible and (87) holds. �

6.2. Leading term of Σ
(2)
nj ,j

. In this section, we investigate the asymptotical behavior of the

sum Σ
(2)
nj ,j

defined in (49). We shall prove that, if qm0 < 1/(1 − 2d), the leading term of this

sum is 2π
c1cqm0

(qm0−1)!S
(1,qm0 ,1)
n,j and has rate n

−(1−2δ(qm0−1))/2
j γ

δ(qm0 )+d+2K
j . To this end we first

show that the remainder terms are negligible.

Proposition 6.3. Assume that Assumptions A hold with M ≥ K + d and that

qm0 < 1/(1 − 2d) ,

where qm0 is defined by (26).
Let (nj) be a diverging sequence. Then, as j → ∞,

n
1/2−δ(qm0−1)
j γ

−δ(qm0 )−d−2K
j


∑

ℓ≥m0

c1cqℓ
qℓ!

‖S(1,qℓ,0)
nj ,j

‖2


→ 0 , (89)

n
1/2−δ(qm0−1)
j γ

−δ(qm0 )−d−2K
j


2π

∑

ℓ>m0

c1cqℓ
(qℓ − 1)!

‖S(1,qℓ,1)
nj ,j

‖2


→ 0 . (90)

Proof. Observe that δ+(1) = d. We apply (68) in Proposition 5.1 with q = 1 and q′ = qℓ.
Thus there exists some C > 0 such that for any ℓ ≥ m0

γ
−δ(qm0 )−d−2K
j ‖S(1,qℓ,0)

n,j ‖2 ≤ C
qℓ+1

2 (qℓ!)
1/2−d n−1/2γ

δ+(qℓ)−δ(qm0 )
j (log γj)

ε(qℓ) . (91)

Since by assumption qm0 < 1/(1 − 2d), we have ε(qm0) = 0 and δ+(qm0) = δ(qm0). Thus the
terms involving γj vanish in the right-hand side of (91). If ℓ > m0, we have δ+(qℓ) < δ(qm0)
and these terms are o(1) as j → ∞. Hence, for j large enough, and for any ℓ ≥ m0,

n1/2−δ(qm0−1)γ
−δ(qm0 )−d−2K
j ‖S(1,qℓ,0)

n,j ‖2 ≤ C
qℓ+1

2 (qℓ!)
1/2−d n−δ(qm0−1) .

Using that δ(qm0 − 1) > δ(qm0) > 0, and that, by Condition (29),

+∞∑

ℓ=m0

C
qℓ+1

2 cqℓ (qℓ!)
−1/2−d < +∞ ,

we obtain the limit (89).
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We now show that (90) holds. Applying (67) with q = 1, q′ = qℓ and p = 1, we get that
there exists some C > 0 such that for any ℓ > m0,

‖S(1,qℓ,1)
n,j ‖2 ≤ C

qℓ+1

2 {(qℓ − 1)!}1/2−d n−α(1,qℓ,1)(log n)ε(qℓ−1)γ
β(1,1)+β(qℓ,1)+2K
j (log γj)

3 . (92)

The definition of α and β by Equations (64) and (65), implies that

α(1, qℓ, 1) = 1/2− δ+(qℓ − 1), β(1, 1) = d, β(qℓ, 1) = max(d+ δ+(qℓ − 1)− 1/2, 0) .

Since ℓ > m0, one has δ+(qℓ − 1) ≤ δ+(qm0+1 − 1). Thus

n
−α(1,qℓ,1)
j (log nj)

ε(qℓ−1) ≤ n
1/2−δ+(qm0+1−1)
j log nj = o

(
n
1/2−δ(qm0−1)
j

)
.

Observe now that for ℓ > m0, we have qℓ − 1 ≥ qm0 and thus

γ
β(1,1)+β(qℓ ,1)+2K
j (log γj)

3 ≤ γ
d+2K+max(d+δ+(qm0 )−1/2,0)
j (log γj)

3 = o
(
γ
d+2K+δ(qm0 )
j

)
.

Now, using the last two displayed equations, (92) and Condition (29), we obtain the limit (90),
which concludes the proof. �

We now deduce the asymptotic behavior of Σ
(2)
nj ,j

.

Proposition 6.4. Under the same assumptions as Proposition 6.3, we have as j → ∞

n
(1−2δ(qm0−1))/2
j γ

−(δ(qm0 )+d+2K)
j Σ

(2)
nj ,j

(L)→
4πc1cqm0

(qm0 − 1)!
[f∗(0)](qm0+1)/2L1Zqm0−1,d(1) , (93)

where L1 is defined in (33) and Zq−1,d is the Hermite process defined in (28).

Proof. We apply Proposition 5.3 with q = 1, q′ = qm0 and p = 1. For these values, since
qm0 < 1/(1− 2d), Condition (74) is satisfied. The exponents of n and γj in the left-hand side
of (76) respectively read

1− δ(q − p)− δ(q′ − p) = 1− δ(0) − δ(qm0 − 1) = 1/2− δ(qm0 − 1)

and

1− δ(q − p)− δ(q′ − p)− 2K − 2δ(p) = −δ(qm0)− d− 2K .

Hence we get that

n
(1−2δ(qm0−1))/2
j γ

−(δ(qm0 )+d+2K)
j S

(1,qm0 ,1)
nj ,j

(L)→ [f∗(0)](qm0+1)/2L1Zqm0−1,d(1) . (94)

Finally we observe that this term corresponds to the second term of the summand in (49)
with index ℓ = qm0 , up to the multiplicative constant 4πc1cqm0

/(qm0−1)!. All the other terms
are negligible by Proposition 6.3. Thus the limit (93) holds. �

6.3. Leading term of Σ
(3)
nj ,j

. In this section we investigate the asymptotic behavior of Σ
(3)
n,j

defined in (50). We first bound the sum over indices ℓ = ℓ0 and p 6= qℓ0 and the one over
indices ℓ > ℓ0 and p ∈ {0, . . . , qℓ}. The two sums will turn out to be negligible.

Proposition 6.5. Assume that Assumptions A hold with M ≥ K + δ(qℓ0) and

qℓ0 + 1 < 1/(1 − 2d) . (95)
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Let (nj) be a diverging sequence. Then, as j → ∞,

n
1−2d

2
j γ

−(δ(qℓ0 )+δ(qℓ0+1)+2K)

j




qℓ0−1∑

p=0

cqℓ0
qℓ0 !

cqℓ0+1

(qℓ0 + 1)!
(2π)pp!

(
qℓ0
p

)(
qℓ0 + 1

p

)
‖S(qℓ0 ,qℓ0+1,p)

nj ,j
‖2


→ 0 ,

(96)

n
1−2d

2
j γ

−(δ(qℓ0 )+δ(qℓ0+1)+2K)

j


 ∑

ℓ∈I\{ℓ0}

qℓ∑

p=0

cqℓ
qℓ!

cqℓ+1

(qℓ + 1)!
(2π)pp!

(
qℓ
p

)(
qℓ + 1

p

)
‖S(qℓ,qℓ+1,p)

nj ,j
‖2


→ 0 .

(97)

Proof. Observe that, since qℓ0 ≥ 1, the assumption qℓ0 + 1 < 1/(1 − 2d) implies that d ∈
(1/4, 1/2).

We first prove Inequality (96). Since there is only a finite number of terms in the left
hand side of Inequality (96), we only have to prove that each term tends to 0. We apply
Proposition 5.1 with q = qℓ0 , q

′ = qℓ0 + 1 and p ≤ qℓ0 − 1. For these values of q, q′ and
p, under Condition (95), we have ε(q′) = 0, and by (111) and (112), we have α(q, q′, p) ≥
min(3(1/2 − d), 1/2), β(q, p) ≤ δ+(qℓ0) = δ(qℓ0) and β(q

′, p) ≤ δ+(qℓ0 + 1) = δ(qℓ0 + 1). Thus
Equation (67) yields

n(1−2d)/2γ
−(δ(qℓ0 )+δ(qℓ0+1)+2K)

j ‖S(qℓ0 ,qℓ0+1,p)

nj ,j
‖2 = O

(
n−min(1−2d,d) log(n)

)
.

Since d ∈ (1/4, 1/2), we obtain (96).
We now prove (97). We apply Proposition 5.1 with q = qℓ, q

′ = qℓ + 1 and p ≤ qℓ for some
ℓ ∈ I \ {ℓ0}. In this case Inequality (67) reads

γ
−(δ(qℓ0 )+δ(qℓ0+1)+2K)

j ‖S(qℓ,qℓ+1,p)
n,j ‖2

≤ Cqℓ+
1
2Λ2(qℓ − p, p)

1
2Λ2(qℓ + 1− p, p)

1
2n−α(qℓ,qℓ+1,p) log(n)ε(2qℓ+1−2p)

× γ
(β(qℓ,p)−δ(qℓ0))+(β(qℓ+1,p)−δ(qℓ0+1))

j (log γj)
3 . (98)

We observe that for n large enough,

n−α(qℓ,qℓ+1,p) log(n)ε(2qℓ+1−2p) ≤ n−(1−2d)/2 . (99)

Indeed, on the one hand, if p = qℓ, then ε(2qℓ + 1− 2p) = ε(qℓ + qℓ + 1− 2qℓ) = ε(1) = 0 and
α(qℓ, qℓ +1, qℓ) ≥ (1− 2d)/2 (108). On the other hand, if p < qℓ, since d > 1/4, (107) implies
that α(qℓ, qℓ + 1, p) ≥ 1− 2d.

In addition, by (112) one has for any p ≤ qℓ, β(qℓ, p) ≤ δ+(qℓ). Thus, for any ℓ > ℓ0 and
any p ≤ qℓ,

γ
(β(qℓ,p)−δ(qℓ0))+(β(qℓ+1,p)−δ(qℓ0+1))

j (log γj)
3 ≤ γ

(δ+(qℓ)−δ(qℓ0 ))+(δ+(qℓ+1)−δ(qℓ0+1))

j (log γj)
3

≤ γ
(δ+(qℓ0+1)−δ(qℓ0 ))+(δ+(qℓ0+1+1)−δ(qℓ0+1))

j (log γj)
3 = o(1) . (100)

As in the proof of Proposition 6.1, the Cauchy–Schwartz inequality and Condition (29) imply
that

∑

ℓ≥0

(2πC)qℓ+1/2cqℓcqℓ+1

qℓ!(qℓ + 1)!

qℓ∑

p=0

p!

(
qℓ
p

)(
qℓ + 1

p

)
Λ2(qℓ − p, p)

1
2Λ2(qℓ + 1− p, p)

1
2 <∞ .

Applying this, (98), (99) and (100), we obtain (97). �
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The following result can now be established.

Proposition 6.6. Under the same assumptions as Proposition 6.5, we have as j → ∞

n
(1−2d)/2
j γ

−(δ(qℓ0+1)+δ(qℓ0 )+2K)

j Σ
(3)
nj ,j

(L)→ 2(2π)qℓ0
cqℓ0cqℓ0+1

qℓ0 !
[f∗(0)qℓ0+1/2Lqℓ0

]Z1,d(1) .

Proof. We apply Proposition 5.3 with q = q′ − 1 = qℓ0 and p = qℓ0 . Indeed we have, under
Condition (95), 0 < q = qℓ0 < q′ = qℓ0 +1 < 1/(1−2d) and q+ q′−2p = qℓ0 + qℓ0 +1−2qℓ0 =
1 < 1/(1 − 2d). Thus Condition (74) holds. We obtain that, as j → ∞,

n
(1−2d)/2
j γ

−(δ(qℓ0 )+δ(qℓ0+1)+2K)

j S
(qℓ0 ,qℓ0+1,qℓ0)

nj ,j

(L)→ [f∗(0)qℓ0+1/2Lqℓ0
]Z1,d(1) . (101)

Using this limit, Proposition 6.5 and the definition of Σ
(3)
nj ,j

in (50), we conclude the proof. �

7. Proofs of Theorems 3.1, 3.2 and 3.3

7.1. Proof of Theorem 3.1. In the setting of Theorem 3.1, one has q0 ≥ 2 and thus c1 = 0

and q∗0 = q0 ≥ 2. Thus Σ
(2)
nj ,j

and S
(1,1,0)
nj ,j

, vanish in (46) and the asymptotic behavior of Snj ,j

results from Σ
(0)
nj ,j

+ Σ
(1)
nj ,j

and Σ
(3)
nj ,j

given in Proposition 6.2 and 6.6, respectively. These

propositions apply because we assume (31) and M ≥ K + δ(q0) in Theorem 3.1. Now the
ratio of the convergence rates appearing in these propositions reads

n
1/2−d
j γ

−(δ(qℓ0 )+δ(qℓ0+1)+K)

j =
(
njγ

−ν
j

)1/2−d
.

Hence Case (a) of Theorem 3.1 corresponds to

Σ
(3)
nj,j

= oP

(
Σ

(0)
nj ,j

+Σ
(1)
nj ,j

)

and Case (b) to

Σ
(0)
nj ,j

+Σ
(1)
nj ,j

= oP

(
Σ

(3)
nj ,j

)
.

The proof of Theorem 3.1 follows. �

7.2. Proof of Theorems 3.2 and 3.3. Here Condition (36) holds, so that q0 = 1, q1 <

1/(1−2d) and ℓ0 = ∞ (or equivalently I is an empty set). In particular Σ
(3)
nj,j

vanishes in (46)

and the asymptotic behavior of Snj ,j is obtained from those of S
(1,1,0)
nj ,j

, Σ
(0)
nj,j

+Σ
(1)
nj ,j

and Σ
(2)
nj ,j

.

Since moreover M > K+d, Proposition 5.2 applies. Using the definition of q∗0 in (60) we have
q∗0 = q1, and since M > K + d ≥ K + δ(q∗0) Propositions 6.2 also applies. Finally, observing
that here m0 defined in (26) equals 1 and that M > K + d, Proposition 6.4 applies. Thus,
using (46), it only remains to compare the convergence rates in these propositions.

We first prove Theorem 3.2. Recall that, by Lemma 3.1, since q1 < q∗1, one has

ν1 < ν2 < ν3 ,

where these three indices are defined in (38). In Figure 1, we provide pairwise comparisons of

the rates of convergence of S
(1,1,0)
nj ,j

, Σ
(0)
nj ,j

+Σ
(1)
nj ,j

and Σ
(2)
nj ,j

. We obtain domains separated by

the three curves nj = γν1j , nj = γν2j and nj = γν3j . Each curve is concerned with a pair of two

terms among the three and separates the plane (γj , nj) in two domains, where one of the two
terms dominates the other. We indicated the dominating term by G for the asymptotically

Gaussian term S
(1,1,0)
nj ,j

, R for the asymptotically Rosenblatt term Σ
(0)
nj ,j

+Σ
(1)
nj ,j

and H for the
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γj

nj

γν3j

RH

γν2j

R G

γν1j

H G

Figure 1. Pairwise comparisons of the rates of convergence of S
(1,1,0)
nj ,j

(G),

Σ
(0)
nj ,j

+Σ
(1)
nj ,j

(R) and Σ
(2)
nj ,j

(H) in the plane γj versus nj.

term Σ
(3)
nj ,j

belonging asymptotically to a chaos of order greater than 2. We get three domains

where one term dominates over the other two:

• γν3j ≪ nj: since the domain lies both on the left-hand side of the curve nj = γν3j and

on the left-hand side of the curve nj = γν2j , R dominates H and R dominates G, hence

R dominates H and G. That is, the two terms S
(1,1,0)
nj ,j

and Σ
(2)
nj ,j

are both negligible

with respect to Σ
(0)
nj ,j

+Σ
(1)
nj,j

. By Proposition 6.2, we obtain Case (a) of Theorem 3.2.

• γν1j ≪ nj ≪ γν3j : since the domain lies both on the right-hand side of the curve

nj = γν3j and on the left-hand side of the curve nj = γν1j , H dominates R and

H dominates G, hence R dominates R and G. That is, the two terms S
(1,1,0)
nj ,j

and

Σ
(0)
nj ,j

+Σ
(1)
nj ,j

are both negligible with respect to Σ
(2)
nj ,j

. By Proposition 6.4, we obtain

Case (b) of Theorem 3.2.

• nj ≪ γν1j : G dominates H and R, that is, the two terms Σ
(0)
nj ,j

+ Σ
(1)
nj ,j

and Σ
(2)
nj ,j

are both negligible with respect to S
(1,1,0)
nj ,j

. By Proposition 5.2, we obtain Case (c) of

Theorem 3.2.

This completes the proof of Theorem 3.2.
The proof of Theorem 3.3 is similar except that the assumption q1 ≥ q∗1 implies that

ν3 ≤ ν2 ≤ ν1 .

The domains of convergence are now obtained from Figure 2. �

8. Technical lemmas

The following lemma is used in the proof of Proposition 5.1 and in that of Lemma 8.3.
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Figure 2. Domains of convergence for Theorem 3.3

Lemma 8.1. Define, for all a > 0 and β1 ∈ (0, 1),

J1,a(s1;β1) = |s1|−β1 , s1 ∈ R , (102)

and, for any integer p ≥ 2 and β = (β1, · · · , βp) ∈ (0, 1)p,

Jp,a(s1;β) =

∫ (p−1)a

s2=−(p−1)a
. . .

∫ a

sp=−a

p∏

i=2

|si−1 − si|−βi−1 |sp|−βp dsp . . . ds2, s1 ∈ R . (103)

Then

(i) if β1 + · · ·+ βp > p− 1, we have

Cp(β) := sup
a>0

sup
|s1|≤pa

(
|s1|−(p−1−(β1+···+βp))Jp,a(s1;β)

)
<∞ ,

(ii) if β1 + · · ·+ βp = p− 1, we have

Cp(β) := sup
a>0

sup
|s1|≤pa

(
1

1 + log(pa/|s1|)
Jp,a(s1;β)

)
<∞ ,

(iii) if there exists q ∈ {2, . . . , p− 1} such that βq + · · ·+ βp = p− q, we have

Cp(β) := sup
a>0

sup
|s1|≤pa

(
1

1 + log(pa/|s1|)
a−(q−1−(β1+···+βq−1))Jp,a(s1;β)

)
<∞ ,

(iv) if β1 + · · ·+ βp < p− 1 and for all q ∈ {1, . . . , p− 1}, we have βq + · · · + βp 6= p− q,
we have

Cp(β) := sup
a>0

sup
|s1|≤pa

(
a−(p−1−(β1+···+βp))Jp,a(s1;β)

)
<∞ .
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Moreover, in the case where all the components of β are equal to b ∈ (0, 1), there exists a
constant c > 0 depending only on b such that

sup
p≥1

c−p(p!)b−1 Cp(b1p) <∞ , (104)

where 1p denotes the p–dimensional vector with all entries equal to 1.

Remark 8.1. As in Clausel et al. [2011b], all the cases can be compactly written as

Cp(β) = sup
a>0

sup
|s1|≤pa

(
a−(p−1−(β1+···+βp))+ |s1|(p−1−(β1+···+βp))−

(1 + log(pa/|s1|))ε
Jp,a(s1;β)

)

where ε = 1 if there exists q ∈ {1, · · · , p} such that βq + · · ·+βp = p− q and ε = 0 otherwise,
and x+ = max(x, 0), x− = max(−x, 0). Now, observing that

(p− 1− 2pd)+ = (p(1− 2d)− 1)+ = (−2δ(p))+ = 2δ−(p) ,

and, similarly, (p − 1 − 2pd)− = 2δ+(p), Inequality (104) with b = 2d ∈ (0, 1) implies there
exists a constant c > 0 depending only on d such that for any a > 0, |s1| ≤ pa

Jp,a(s1; 2d1p) ≤ cp(p!)1−2da2δ−(p)|s1|−2δ+(p)(1 + log(pa/|s1|))ε(p) , (105)

where ε(p) is here defined by (66), which corresponds to the ε above in the case β1 = · · · =
βp = 2d.

Proof. Observe first that for all p ≥ 1,

Jp,a(s1;β) =

∫ (p−1)a

s2=−(p−1)a
|s2 − s1|−β1 Jp−1,a(s2;β

′) ds2 , (106)

where β′ = (β2, . . . , βp). The finiteness of the bounds Cp(β) for any integer p and any
β ∈ (0, 1)p is then proved by induction on p in the different cases in Lemma 9.3 of Clausel et al.
[2011b].

Finally we show the uniform bound (104), that is, that Cp(b, . . . , b) = O(cp1(p!)
1−b) as

p → ∞ for any fixed b ∈ (0, 1). We provide a proof only in the case where 1/(1 − b) is not
an integer (to avoid cases (ii) and (iii)). The proof is similar in the other case. Hence we
use the induction step described in Case 1 above. Observe that there exists some integer p0
depending only on b, such that for any p ≥ p0 we have (p − 1)b < p − 2, which corresponds
above to β2 + · · · + βp < p − 2 (case (iv)). Hence using the induction assumption (106), the
finiteness of Cp in case (iv) and the fact that |s1| ≤ pa, we get that there exists some positive
constant c depending only on b such that,

Jp,a(s1; b, · · · , b) ≤ Cp−1(b, · · · , b) ap−2−(p−1)b

(∫ (p−1)a

−(p−1)a
|s2 − s1|−bds2

)

≤ Cp−1(b, · · · , b) ap−2−(p−1)b ×
(
c(b)((2p − 1)a)1−b

)

=
(
c(b)p1−b Cp−1(b, . . . , b)

)
ap−1−pb .

This yields that for any p ≥ p0(b), Cp(b, . . . , b) ≤ c(b)p1−b Cp−1(b, . . . , b). Since this holds for
any p ≥ p0(b), the bound (104) follows by induction. �

The following lemma provides bounds of α and β defined in (64) and (65). It is used in
the proofs of Propositions 6.1, 6.3 and 6.5.
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Lemma 8.2. One has

(1) Assume that d > 1/4. Then for any (q, q′) ∈ N2

inf
0≤p≤min(q∨q′−2,q∧q′)

(
α(q, q′, p)

)
≥ 1− 2d , (107)

In any case,

α(q, q′,min(q ∨ q′ − 1, q ∧ q′)) ≥ 1/2− d . (108)

(2) For any q ∈ N

inf
0≤p≤q−2

(α(q, q, p)) ≥ min(2(1− 2d), 1/2) . (109)

Further,

α(q, q, q − 1) = min(1− 2d, 1/2) . (110)

(3) For any q ∈ N

inf
0≤p≤q−1

(α(q + 1, q, p)) ≥ min(3/2(1 − 2d), 1/2) . (111)

(4) For any q ∈ N

sup
0≤p≤q

(β(q, p)) ≤ δ+(q) . (112)

Proof. (1) Let us fix (q, q′) ∈ N2 and assume that q′ ≤ q. Since the map

m 7→ δ+(m) = max(dm− (m− 1)/2, 0) ,

is non–increasing with range in [0, 1/2], one has for 0 ≤ p ≤ min(q − 2, q′)

α(q, q′, p) = min(1− δ+(q − p)− δ+(q
′ − p), 1/2) ≥ min(1− δ+(2) − 1/2, 1/2) .

If d > 1/4, δ+(2) = 2d− 1/2 and thus

α(q, q′, p) ≥ min(1− 2d, 1/2) = 1− 2d ,

which proves (107). Finally, if p = q − 1 and p ≤ q′,

α(q, q′, p) = min(1− δ+(q − p)− δ+(q
′ − p), 1/2) ≥ min(1− δ+(1)− 1/2, 1/2)

= min(1/2 − d, 1/2) = 1/2− d ,

which proves (108).
(2) Let us fix q ∈ N, then for any p ≤ q − 2,

α(q, q, p) = min(1− δ+(q − p)− δ+(q − p), 1/2) ≥ min(1− 2δ+(2), 1/2) .

If d ≤ 1/4, δ+(2) = 0 and we get α(q, q, p) ≥ 1/2 ≥ min(2(1 − 2d), 1/2). If d > 1/4,
2δ+(2) = 2δ(2) = 4d− 1 and

α(q, q, p) ≥ min(1− (4d − 1), 1/2) = min(2(1 − 2d), 1/2) ,

which gives (109). To prove (110), we observe that if p = q − 1,

α(q, q, p) = min(1− 2δ+(1), 1/2) = min(1− 2d, 1/2) .
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(3) Let us fix q ∈ N, then for any p ≤ q − 1,

α(q + 1, q, p) = min(1− δ+(q + 1− p)− δ+(q − p), 1/2) ≥ min(1− δ+(2)− δ+(1), 1/2)

= min(1− d− δ+(2), 1/2) .

If d ≤ 1/4, δ+(2) = 0 and α(q + 1, q, p) ≥ min(1 − d, 1/2) = 1/2. If d > 1/4,
δ+(2) = 2d− 1/2 and (111) follows from

α(q + 1, q, p) ≥ min(1− d− (2d− 1/2), 1/2) = min(3(1 − 2d)/2, 1/2) .

(4) If β(q, p) = 0, then β(q, p) ≤ δ+(q). Now consider the case where

β(q, p) = max(δ+(p) + δ+(q − p)− 1/2, 0) > 0 ,

that is, δ+(p)+δ+(q−p)−1/2 > 0. In this case, δ+(p) and δ+(q−p) are both positive
(since 0 ≤ δ+(·) < 1/2) and they respectively equal δ(p) and δ(q−p). Then we obtain

max(δ+(p) + δ+(q − p)− 1/2, 0) = δ(p) + δ(q − p)− 1/2 = δ(q) ,

which again implies (112).
�

The following result provides a bound of κ̂
(p)
j defined in (53), in the case where p > 0. It is a

refinement of Lemma 10.1 of Clausel et al. [2011b]. It is used in the proof of Proposition 5.3.

Lemma 8.3. Suppose that Assumptions A hold and let p be a positive integer. Then there
exists some C > 0 neither depending on p nor j such that for any (ξ1, ξ2) ∈ R2,

(i) if for any s ∈ {1, · · · , p}, s(1− 2d) 6= 1 then,

|κ̂(p)j (ξ1, ξ2)| ≤ Cp(p!)1−2d
γ
2(δ+(p)+K)
j

(1 + γj |{ξ1}|)δ+(p)(1 + γj |{ξ2}|)δ+(p)
. (113)

(ii) if there exists s ∈ {1, · · · , p} such that s(1− 2d) = 1, then,

|κ̂(p)j (ξ1, ξ2)| ≤ Cp(p!)1−2d γ2Kj log(γj) . (114)

Remark 8.2. In Case (ii) of Lemma 8.3, we have p > 1/(1 − 2d), hence δ+(p) = 0. Equa-
tions (114) and (113) can thus be written as a single bound, namely,

|κ̂(p)j (ξ1, ξ2)| ≤ Cp(p!)1−2d
γ
2(δ+(p)+K)
j

(1 + γj |{ξ1}|)δ+(p)(1 + γj |{ξ2}|)δ+(p)
(log γj)

ε(p) , (115)

where ε(p) is defined by (66).

Proof. By (2π)-periodicity of κ̂
(p)
j (ξ1, ξ2) along both variables ξ1 and ξ2, we may take ξ1, ξ2 ∈

[−π, π]. The remainder of the proof shows that (115) holds for such (ξ1, ξ2).
Note that by assumption,

f(λ) ≤ C |λ|−2d ,

where C > 0 only depends on f∗. Using (137), (53) and (103) with

µi = γj(λi + · · · + λp) ,

we get

|κ̂(p)j (ξ1,−ξ2)| ≤ Cpγ
2(K+δ(p))
j

∫ pγjπ

−pγjπ

Jp,γjπ(µ1; 2d 1p)dµ1∏2
i=1 (1 + γj |{µ1/γj + ξi}|)K+α

.
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Then, by (105), there exists C > 0 not depending on j, p such that, for all (ξ1, ξ2) ∈ [−π, π]2,

|κ̂(p)j (ξ1,−ξ2)| ≤ Cp(p!)1−2dγ
2K+2(δ(p)+δ−(p))
j

∫ pγjπ

−pγjπ

|µ1|−2δ+(p)(1 + log(pγjπ/|µ1|))ε(p)dµ1∏2
i=1 (1 + γj |{µ1/γj + ξi}|)K+α

.

Using that δ(p) = δ+(p) − δ−(p) and the Cauchy–Schwartz inequality, to obtain (115), it is
sufficient to show that, for all ξ ∈ (−π, π],
∫ pγjπ

−pγjπ

|µ1|−2δ+(p)(1 + log(pγjπ/|µ1|))ε(p)dµ1
(1 + |γj {µ1/γj + ξ}|)2(K+α)

≤ C p log p (1+γj|ξ|)−2δ+(p) (log γj)
ε(p) , (116)

where C is a positive constant.
If δ(p) > 0 the rest of the proof is similar to that of Lemma 10.1 in Clausel et al. [2011b]

and is thus omitted.
We now take δ+(p) = 0, so that (116) becomes

∫ pγjπ

−pγjπ

(1 + log(pγjπ/|µ1|))ε(p)dµ1
(1 + |γj {µ1/γj + ξ}|)2(K+α)

≤ C p log p (log γj)
ε(p) , (117)

The denominator in the integral is a (2πγj)-periodic function of µ1, hence the integral over
[−pγjπ, pγjπ] is bounded by the sum of at most p+ 1 integral of the form

I(−γjξ + 2kγjπ) with I(y) =

∫

A(y)

(1 + log(pγjπ/|µ1|))ε(p)dµ1
(1 + |µ1 − y|)2(K+α)

,

where k ∈ Z and A(y) = [−pγjπ, pγjπ] ∩ (y − γjπ, y + γjπ]. We observe that I(y) is maximal
at y = 0 where it takes value

I(0) =

∫ γjπ

−γjπ

(1 + log(pγjπ/|µ1|))ε(p)dµ1
(1 + |µ1|)2(K+α)

≤ (1 + log(pγjπ))
ε(p)

∫ ∞

−∞

(1 + | log(|µ1|)|)ε(p)dµ1
(1 + |µ1|)2(K+α)

.

Since the last integral in the previous display is finite for ε(p) = 0, 1, we finally obtain (117).
�

Appendix A. Integral representations

It is convenient to use an integral representation in the spectral domain to represent the
random processes (see for example Major [1981], Nualart [2006]). The stationary Gaussian
process {Xk, k ∈ Z} with spectral density (2) can be written as

Xℓ =

∫ π

−π
eiλℓf1/2(λ)dŴ (λ) =

∫ π

−π

eiλℓf∗1/2(λ)

|1− e−iλ|d dŴ (λ), ℓ ∈ N . (118)

This is a special case of

Î(g) =

∫

R

g(x)dŴ (x), (119)

where Ŵ (·) is a complex–valued Gaussian random measure satisfying, for any Borel sets A

and B in R, E(Ŵ (A)) = 0, E(Ŵ (A)Ŵ (B)) = |A ∩B| and

Ŵ (A) = Ŵ (−A) .
The integral (119) is defined for any function g ∈ L2(R) and one has the isometry

E(|Î(g)|2) =
∫

R

|g(x)|2dx .
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The integral Î(g), moreover, is real–valued if

g(x) = g(−x) .
We shall also consider multiple Itô–Wiener integrals

Îq(g) =

∫ ′′

Rq

g(λ1, · · · , λq)dŴ (λ1) · · · dŴ (λq)

where the double prime indicates that one does not integrate on hyperdiagonals λi = ±λj, i 6=
j. The integrals Îq(g) are handy because we will be able to expand our non–linear functions
G(Xk) introduced in Section 1 in multiple integrals of this type.

These multiples integrals are defined for g ∈ L2(Rq,C), the space of complex valued func-
tions defined on Rq satisfying

g(−x1, · · · ,−xq) = g(x1, · · · , xq) for (x1, · · · , xq) ∈ R
q , (120)

‖g‖2L2 :=

∫

Rq

|g(x1, · · · , xq)|2 dx1 · · · dxq <∞ . (121)

Hermite polynomials are related to multiple integrals as follows : if X =
∫
R
g(x)dŴ (x) with

E(X2) =
∫
R
g2(x)dx = 1 and g(x) = g(−x) so that X has unit variance and is real–valued,

then

Hq(X) = Îq(g
⊗q) =

∫ ′′

Rq

g(x1) · · · g(xq)dŴ (x1) · · · dŴ (xq) . (122)

Since X has unit variance, one has for any ℓ ∈ Z,

Hq(Xℓ) = Hq

(∫ π

−π
eiξℓf1/2(ξ)dŴ (ξ)

)

=

∫ ′′

(−π,π]q
eiℓ(ξ1+···+ξq) ×

(
f1/2(ξ1)× · · · × f1/2(ξq)

)
dŴ (ξ1) · · · dŴ (ξq) .

Then by (40), we have

W
(q)
j,k =

∑

ℓ∈Z

h
(K)
j (γjk − ℓ)Hq(Xℓ) = Îq(f

(q)
j,k ) (123)

with

f
(q)
j,k (ξ1, · · · , ξq) = eikγj(ξ1+···+ξq) × ĥ

(K)
j (ξ1 + · · ·+ ξq)f

1/2(ξ1) · · · f1/2(ξq)1⊗q
(−π,π)(ξ) , (124)

because
∑

ℓ∈Z

eiℓ(ξ1+···+ξq)h
(K)
j (γjk − ℓ) = eiγjk(ξ1+···+ξq)

∑

u∈Z

e−iu(ξ1+···+ξq)h
(K)
j (u)

= eiγjk(ξ1+···+ξq)ĥ
(K)
j (ξ1 + · · ·+ ξq) ,

by (127).
The following proposition can be found in Peccati and Taqqu [2011], Formula (9.7.32). It

is an extension to our complex–valued setting of a corresponding result in Nualart [2006] for
multiple integrals in a real–valued setting.
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Proposition A.1. Let (q, q′) ∈ N2. Assume that f, g are two symmetric functions belonging

respectively to L2(Rq) and L2(Rq′) then the following product formula holds :

Îq(f)Îq′(g) =

q∧q′∑

p=0

(2π)pp!

(
q
p

)(
q′

p

)
̂Iq+q′−2p(f⊗pg), (125)

where for any p ∈ {1, · · · , q ∧ q′}

(f⊗pg)(t1, · · · , tq+q′−2p) = (2π)p
∫

Rp

f(t1, · · · , tq−p, s)g(tq−p+1, · · · , tq+q′−2p,−s)dps . (126)

Appendix B. The wavelet filters

The sequence {Yt}t∈Z can be formally expressed as

Yt = ∆−KG(Xt), t ∈ Z .

The study of the asymptotic behavior of the scalogram of {Yt}t∈Z at different scales involve
multidimensional wavelets coefficients of {G(Xt)}t∈Z and of {Yt}t∈Z. To obtain them, one
applies a multidimensional linear filter hj(τ), τ ∈ Z = (hj,ℓ(τ)), at each scale j ≥ 0. We shall
characterize below the multidimensional filters hj(τ) by their discrete Fourier transform :

ĥj(λ) =
∑

τ∈Z

hj(τ)e
−iλτ , λ ∈ [−π, π] , hj(τ) =

1

2π

∫ π

−π
ĥj(λ)e

iλτdλ, τ ∈ Z . (127)

The resulting wavelet coefficients Wj,k, where j is the scale and k the location are defined as

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KG(Xt), j ≥ 0, k ∈ Z, (128)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale j, for
example γj = 2j . We do not assume that the wavelet coefficients are orthogonal nor that
they are generated by a multiresolution analysis. Our assumption on the filters hj = (hj,ℓ)
are as follows :

(W-a) Finite support: For each ℓ and j, {hj,ℓ(τ)}τ∈Z has finite support.
(W-b) Uniform smoothness: There exists M ≥ K, α > 1/2 and C > 0 such that for all j ≥ 0

and λ ∈ [−π, π],

|ĥj(λ)| ≤
Cγ

1/2
j |γjλ|M

(1 + γj |λ|)α+M
. (129)

By 2π-periodicity of ĥj this inequality can be extended to λ ∈ R as

|ĥj(λ)| ≤ C
γ
1/2
j |γj{λ}|M

(1 + γj|{λ}|)α+M
. (130)

where {λ} denotes the element of (−π, π] such that λ− {λ} ∈ 2πZ.
(W-c) Asymptotic behavior: There exists a sequence of phase functions Φj : R → (−π, π]

and some non identically zero function ĥ∞ such that

lim
j→+∞

(γ
−1/2
j ĥj(γ

−1
j λ)) = ĥ∞(λ) , (131)

locally uniformly on λ ∈ R.
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In (W-c) locally uniformly means that for all compact K ⊂ R,

sup
λ∈K

∣∣∣γ−1/2
j ĥj(γ

−1
j λ)eiΦj(λ) − ĥ∞(λ)

∣∣∣→ 0 .

Assumptions (129) and (131) imply that for any λ ∈ R,

|ĥ∞(λ)| ≤ C
|λ|M

(1 + |λ|)α+M
. (132)

Hence ĥ∞ has entries in L2(R). We let h∞ be the vector of L2(R) inverse Fourier transforms

of ĥℓ,∞, that is

ĥ∞(ξ) = F(h∞)(ξ) =

∫

Rq

h∞(t)e−itT ξ dqt, ξ ∈ R
q , (133)

is defined for any f ∈ L2(Rq,C).

Observe that while ĥj is 2π–periodic, the function ĥ∞ has non–periodic entries on R.
For the connection between these assumptions on hj and corresponding assumptions on the
scaling function ϕ and the mother wavelet ψ in the classical wavelet setting see Moulines et al.

[2007]. In particular, in that case, one has ĥ∞ = ϕ̂(0)ψ̂.
A more convenient way to express the wavelet coefficients Wj,k defined in (128) is to

incorporate the linear filter ∆−K in (128) into the filter hj and denote the resulting filter

h
(K)
j . Then

Wj,k =
∑

t∈Z

h
(K)
j (γjk − t)G(Xt) , (134)

where

ĥ
(K)
j (λ) = (1− e−iλ)−K ĥj(λ) (135)

is the discrete Fourier transform of h
(K)
j . Using (130) we get,

∣∣∣ĥ(K)
j (λ)

∣∣∣ ≤ Cγ
1/2+K
j

|γj{λ}|M−K

(1 + γj|{λ}|)α+M
, λ ∈ R, j ≥ 1 . (136)

In particular, since we assume if M ≥ K, we get
∣∣∣ĥ(K)

j (λ)
∣∣∣ ≤ Cγ

1/2+K
j (1 + γj|{λ}|)−α−K , λ ∈ R, j ≥ 1 . (137)

By Assumption (129), hj has null moments up to order M − 1, that is, for any m ∈
{0, · · · ,M − 1},

∑

t∈Z

hj(t)t
m = 0 . (138)

Observe that ∆KY is centered by definition. However, by (138), the definition of Wj,k only

depends on ∆MY . In particular, provided that M ≥ K + 1, its value is not modified if a
constant is added to ∆KY , whenever M ≥ K + 1.
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