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Band 6
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75634 Paris Cedex 13

(v1 released June 2011)

In this letter, we introduce an algorithm for the restoration of missing data from multi-
spectral satellite imagery. The proposed approach combines two simple principles; non local
or neighborhood filters used in the context of still image denoising/inpainting and spectral
matching techniques based on spectral similarity measures and required for the classification
of hyperspectral images. The resulting semi-physical approach, refered to as spectral inpaint-
ing, is applied to the particular issue of Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) band 6 (1628-1652 µm) non functional detectors and is shown to provide very good
results compared to standard interpolation techniques.

1. Introduction

The post-launch phase of a satellite imaging instrument can reveal dramatic de-
viations from the initial characterization of its spectro-radiometric response. This
is indeed the main motivation behind the use of on-orbit calibration components,
which provide complementary tuning parameters for the acquisition system. Un-
fortunaly, technological alternatives are yet to be conceived when specifics parts
of the sensor become completely inoperable, either transiently or permanently. A
common issue that occurs in such cases is the loss of information, visible in acquired
images as missing pixels. Major factors contributing to data loss include for ex-
ample downlink transmission errors between the satellite and the receiving groud
station, in which case partial retrieval of information leads to anomalous recon-
struction of images. Another cause for missing pixels reported on several imaging
spectrometers such as Landsat, SPOT and MODIS is detector failure due to tem-
porary space particle bombardement or irreversible hardware damage. Inoperable
detectors can be highly problematic for both pushbroom and whiskbroom scanners
given their role in the image acquisition process. In fact, one dimension of the im-
age is generated from the orbital motion of the satellite while the other dimension
is captured by individual detectors. Consequently, a dead-detector will result in
a single line drop-out for pushbroom sensors and periodic missing lines from the
entire swath for whiskbroom instruments. A good example of the later scenario
occurs in Aqua MODIS band 6 (1628-1652 µm). NASA’s MODIS instrument is a
cross-track scanner composed of a double sided scanning mirror that deflects the
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Earth energy into 4 Focal Plane Assemblies (FPA). Each FPA is sensitive to a
specific portion of the electromagnetic spectrum and contains detector arrays of
10, 20 or 40 pixels depending on the resolution of the considered spectral band.
On Aqua MODIS band 6, 8 of the 20 detectors are non functional and do not
capture any signal. As a result, data from Aqua MODIS band 6 is affected with a
striping pattern that compromises visual interpretation and discourages any fur-
ther quantitative processing. Furthermore, similarly to many other spectral bands,
radiometric miscalibration of detectors also generates stripe noise. The spectral
location of band 6 discards its usefulness for the estimation of forest biomass (Bac-
cini et al. 2004), aerosols concentration and optical depth (Ignatov et al. 2005) and
more importantly cloud detection and snow cover (Salomonson and Appel 2004).
Given the high necessity of snow cover mapping and monitoring in studies related
to climate change, many scientists have relied instead on the use of Aqua MODIS
band 7 (2105-2155 µm) to compute the Normalized Difference Snow Index (NDSI).
This alternative however decreases the accuracy of retrieved NDSI measurements
and only applies to snow applications because of similar snow reflectance values in
bands 6 and 7. Following these observations, two methods have been proposed to
restore Aqua MODIS band 6. Both exploit the strong correlation between band 6
and band 7. In (Wang et al. 2006), missing pixels are estimated via global inter-
polation. A polynomial regression between Terra MODIS bands 6 and 7 swaths is
established and transposed to Aqua MODIS. Over snow covered areas, the authors
suggest the following analytical relationships:

ρ6 = 1.6032ρ37 − 1.9458ρ27 + 1.7948ρ7 + 0.012396

ρ6 = −0.70472ρ27 + 1.5369ρ7 + 0.025409
(1)

where ρ6 and ρ7 are Top-Of-Atmosphere (TOA) reflectances for bands 6 and 7.
As pointed out in (Wang et al. 2006), global interpolation does not account for
scene cover types and restored results over ocean, land or desert are often disa-
pointing. This limitation is partly accounted for in the local interpolation approach
introduced in (Rakwatin et al. 2009). The described algorithm uses a sliding win-
dow that locally evaluates the cubic polynomial relationship between bands 6 and
7 valid pixels. This methodology however does not necessarily ensure cover type
distinction because its locality is restrained to the spatial dimension. In fact, a
missing pixel from band 6 is derived from its value in band 7, when the later does
not correspond to a minima or maxima of the considered window. If this implicit
assumption of data homogeneity is not satisfied, missing data is estimated from
pixels spatially close but spectrally distant.
In this letter, we introduce a general concept to estimate the value of dead pixels
from multispectral imagery. The method relies on a simple, yet physically coherent
approach that combines non local filters and spectral similarity, respectively used
in image restoration and hyperspectral image classification.

2. Methodology

Let us consider the general case of a multispectral intrument composed of K spec-
tral bands with K ≥ 3 which corresponds to sensors that collect data from at
least the red, green and blue regions of the electromagnetic spectrum. To simplify
notations in the following, we assume that only one band, denoted as band number
M is suffering from missing data. The signal acquired by the imaging scanner is
considered as a vector in a K-dimension space, defined at pixel x of a bounded
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Figure 1. Images from Terra MODIS Band 3 acquired over snow covered areas and used to validate the
restoration of Aqua MODIS band 6 (a) Alaska (b) Labrador (c) Siberia (d) Kuparuk (e) South America
(f) Washington

domain Ω ∈ R
2 as:

ρ(x) = (ρ1(x), ρ2(x)..., ρi(x), ..., ρK(x))T (2)

where ρi(x) is the reflectance of pixel x measured in the spectral band i.

2.1 Spectral Similarity

In order to ensure physical consistency in the restoration of band M , the spectral
characteristics of missing pixels are required. This however cannot be achieved us-
ing only information from band 6, and indeed explains the poor results obtained
with standard interpolation techniques that consist for example in replacing non-
functional detectors with neighbors. It should be clear that the analysis of addi-
tional spectral bands offers the possibility to discriminate different cover types.
To this purpose, we naturally rely on spectral similarity measures commonly used
for the segmentation and classification of hyperspectral remotely sensed data. For
instance, the determination of surface composition in most geological disciplines,
lies upon quantitative comparison between the reflectance values of acquired pixels
and pre-determined reflectance spectra. Such spectral matching approach exploits
spectral similarity measures (SSM) to distribute pixels withing separate classes.
Let us recall the definition of few SSM often used in imaging spectrometry. The
Spectral Angle Measure (SAM) is defined in (Kruse et al. 1993) as the following
angle:

SAM(x, y) = arcos
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Figure 2. (a) Original image from Terra MODIS band 6 (Siberia) (b) Restored with global interpolation
(Wang et al.) (c) Restored with local interpolation (Rakwatin et al.) (d) Restored with proposed spectral
inpainting using the EDM

The Euclidean Distance Measure (EDM) between two pixels x and y is given by:

EDM(x, y) =

√

√

√

√

K
∑

i=1

(ρi(x)− ρi(y))
2 (4)

The Spectral Information Divergence Measure (SIDM) is a stochastic index that
measures the distance between the probability distribution of spectrum associated
with pixels x and y:

SIDM(x, y) = D(x||y) +D(y||x) (5)

D(x||y) is the relative entropy of y with respect to x computed as:

D(x||y) =

K
∑

i=1

pi(x)Di(ρi(x)||ρi(y)) =

K
∑

i=1

pi(x)(I(ρi(x))− I(ρi(y))) (6)

where

pi(x) =
ρi(x)
n
∑

j=1
ρj(x)

and I(ρi(x)) = −log pi(x)
(7)

For a detailled discussion on the effectiveness of these measures in the case of
hyperspectral imagery, we refer the reader to (Meer 2006).
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Table 1. Information about Terra MODIS swaths used in this study

Region Day MODIS Product

Alaska 05/12/01 MOD021KM.A2001132.2115.005.2010063115234
Labrador 11/07/00 MOD021KM.A2000312.1545.005.2010049235331
Siberia 05/24/01 MOD021KM.A2001144.0510.005.2010064034702
Kuparuk 05/23/02 MOD021KM.A2002143.2155.005.2010083121102
South America 12/08/01 MOD021KM.A2001342.1445.005.2010075210602
Washington 07/22/02 MOD021KM.A2002203.1905.005.2010087151736

2.2 Nonlocal inpainting

The restoration of missing data is a popular topic in the area of still image pro-
cessing, often refered to as inpainting. Unlike satellite imagery, the primary goal
is purely cosmetic and damaged areas are recovered in a way that enables trans-
parency of the initial degradations. As such, any considered restoration procedure
aims to garantee continuation of structures and/or texture in the restored image.
Among all techniques developped for the inpainting issue, we draw a particular at-
tention to the seminal work of (Efros and Leung 1999). The algorithm introduced
by the authors exploits redundancy and self similarity to synthetise texture from a
given sample. Square patches of predetermined size in the sample image are com-
pared to the neighborhood of a pixel in terms of L2 distance. A random selection
among matching patches is used in a copy/paste procedure that gradually fills in
the missing area starting with pixels along its border.
The very concept of nonlocal self-similarity has also been exploited for denoising
purposes. The Yaroslavsky filter for example (Yaroslavsky and Eden 1996), de-
noises data using an average of pixels with similar grey-level intensity. Perhaps
closer in principle to the Efros and Lung approach, is the recent NL-means denois-
ing algorithm proposed in (Buades et al. 2005), where an entire local configuration
centered on a noisy pixel is considered. In both cases, an estimate û(x) of the true
image at pixel x is given by:

û(x) =
1

C(x)

∫

Ω
w(x, y)f(y)dy (8)

where f is the noisy image, C a normalizing parameter and w(x, y) is a weighting
function that quantifies the similarity between pixels x and y. For the Yaroslavsky
filter, the weighting function w can be expressed as:

w(x, y) = exp

(

−
|f(x)− f(y)|2

h2

)

(9)

where h is a parameter that controls the decay of weighting coefficients.
Going back to the issue of multispectral imagery restoration, we argue that the
information of the spatial dimension is of little interest compared to the one con-
tained in the spectral axis. Suffice it to notice the analogy between neighborhood
similarity of nonlocal filters and spectral similarity used in satellite image clas-
sification to invoque the proposed concept of spectral inpainting. Let us consider
a Spectral Similarity Measure (SSM) from those defined in the previous section
(SAM, SIDM and EDM). Since we assumed that spectral band M is corrupted,
it should not be included in the computation of a SSM. For example, the EDM
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between pixels x and y is computed as:

EDM(x, y) =

√

√

√

√

K
∑

i=1, i 6=M

(ρi(x)− ρi(y))
2 (10)

and the spectral neighborhood of a pixel x is defined as:

S(x) = {x ∈ Ω|SSM(x, y) < ǫ and ρM (x) 6= 0} (11)

where the condition ρM (x) 6= 0 discards missing pixels of band M and ǫ is a spec-
tral deviation tolerance parameter. Following the same approach used by nonlocal
denoising algorithms, the value of a missing pixel x from band M can be estimated
from:

ˆρM (x) =
1

C(x)

∫

S(x)
ρM (y)e

−SSM(x,y)

h2 dy (12)

The gaussian weighting in the previous equation ensures that pixels with different
spectral characteristics are given weak weights. A question that arises is the selec-
tion of the parameter ǫ in (11) and the decay regulating parameter h in (12). In
pratice, an alternative approach consists in imposing the cardinality of the set S

instead of selecting a value for ǫ. The set S can be restricted to SN , a set composed
only of the N th most spectrally similar pixels to the missing pixel x. For values of
N ≪ card(S), the gaussian average of equation (12) can be replaced by a simple
arithmetic average:

ˆρM (x) =
1

N

∫

SN (x)
ρM (y)dy (13)

Let us provide further details on the implementation aspect of the spectral inpaint-
ing method. In order to reduce the computational cost of the proposed algorithm,
the entire image domain Ω used for the search of spectrally similar pixels can be
replaced by a subdomain of limited size. The later is not necesseraly square, nor
is it required to be centered at the missing pixel, although this is a reasonable
choice to increase the probability of finding suitable pixels for the restoration pro-
cedure. A possible approach is then to fragment the acquired signal into blocks of
L × L pixels and to apply the spectral inpainting on individual subimages where
the search window is the actual entire subimage domain. The value of L should be
as high as possible and can be adjusted with respect to the available computational
power and/or required processing time.

3. Experimental results

To validate the spectral inpainting algorithm, we used MODIS Level 1B TOA re-
flectances at 1km resolution. Given the importance of MODIS band 6 for snow
applications, we selected 6 images used in the seminal work of (Salomonson and
Appel 2004) and captured by Terra MODIS over snow covered regions located
in Alaska, Labrador, Siberia, Kuparuk, South America and Washington. Because
Terra MODIS band 6 is not corrupted with line dropouts due to non functional
detectors, values from 4 detectors have been set to zero to emulate missing lines
of Aqua MODIS band 6. Spectral Similarity Measures have been computed using
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(a) Global Interpolation, Labrador

−0.5 0.0 0.5 1.0
Simulated NDSI

−0.5

0.0

0.5

1.0

M
ea

su
re

d 
N

D
S

I

(b) Local Interpolation, Labrador
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(c) Spectral Inpainting with EDM, Labrador
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(d) Global Interpolation, Brazil
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(e) Local Interpolation, Washington
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(f) Spectral Inpainting with EDM, Washington

Figure 3. Scatter plot of measured and simulated NDSI index with three restoration techniques, global interpolation ,local interpolation, spectral inpainting



8

bands 3 (459-479 µm), 4 (545-565µm), 5 (1230-1250µm) and 7 (2105-2155µm). Not
only these bands are spectrally distant from each other but they also cover a wide
range of wavelenght, which provides a good discrimination between geophysical el-
ements with different spectral properties. Experiments (not illustrated here) based
on the use of bands 5 and 7 alone, also indicate satisfactory results due to the high
correlation between these bands and band 6 over snow covered areas. The value
of N in (13), is fixed to N = 1. This choice is physically consistent because it
correponds to the case where a missing pixel is given the same value as the most
spectrally similar pixel in the same spectral band.
Global interpolation (Wang et al. 2006), local interpolation (Rakwatin et al. 2009)
and the proposed spectral inpanting technique are applied to Terra MODIS band
6 with synthetic non functional detectors. Restored results for the image acquired
over Alaska are ilustrated in figure 2. The distribution of missing pixels along scan
lines offers a pratical aspect to visually evaluate the restoration quality. In fact,
systematic residual striping and its magnitude on the restored images is a clear
qualitative indicator on the accuracy of missing pixels estimation. In addition,
quantitative analysis is conducted using the NDSI defined as:

NDSI =
ρ4 − ρ6

ρ4 + ρ6
(14)

Some of the images used in this study have been initially corrected using the de-
striping algorithm introduced in (Bouali and Ladjal 2011). Nevertheless, we noticed
that on MODIS reflective bands, including band 6, stripe noise is mostly visible over
low-radiance areas such as ocean targets and its impact on snow covered regions
is not substantial. Scatter plots of measured and simulated NDSI values obtained
with different restoration methodologies for images over Alaska and are illustrated
in figure 2.2. Measured and simulated NDSI are also quantitatively compared in
terms of Absolute Mean Error, Root Mean Square Error (RMSE), and correlation
coefficient. Results reported in tables 3. indicate higher accuracy in the recovery
of band 6 obtained with the spectral inpainting especially when the EDM is used
as the spectral similarity measure.

4. CONCLUSION

In this letter, a restoration procedure for the retrieval of missing data from multi-
spectral imagery is described and applied to the particular issue of Aqua MODIS
band 6 non functional detectors. In order to distinguish different geophysical cover
types, the methodology incorporates spectral similarity measures into a nonlocal
inpainting strategy. Experiments conducted on Terra MODIS band 6 and compar-
ison between simulated and measured NDSI shows improved results compared to
global and local interpolation techniques. Studies dedicated to snow mapping and
based on the use of Aqua MODIS can highly benefit from the proposed approach.
Finally, we point out that the core principle of the spectral inpainting algorithm can
also be applied for the denoising of multispectral/hyperspectral remotely sensed
data.
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Table 2. Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Correlation (COR) between simulated and measured NDSI values using different restoration techniques

– Alaska Labrador Siberia

Restoration MAE RMSE COR MAE RMSE COR MAE RMSE COR

Global interpolation 0.0147 0.0336 0.9960 0.0770 0.1650 0.9232 0.0015 0.0302 0.9979

Local interpolation 0.0133 0.0254 0.9975 0.0220 0.0449 0.9927 0.0069 0.0147 0.9994

Spectral Inpainting

SAM 0.0103 0.0248 0.9973 0.0111 0.0265 0.9974 0.0077 0.0173 0.9991

SIDM 0.0105 0.0255 0.9971 0.0112 0.0267 0.9974 0.0078 0.0175 0.9991

EDM 0.0057 0.0127 0.9993 0.0084 0.0187 0.9987 0.0039 0.0083 0.9998

– Kuparuk South America Washington

Restoration MAE RMSE COR MAE RMSE COR MAE RMSE COR

Global interpolation 0.0235 0.0495 0.9942 0.0398 0.0709 0.9887 0.0223 0.0439 0.9651

Local interpolation 0.0191 0.0446 0.9951 0.0568 0.0987 0.9815 0.0158 0.0366 0.9754

Spectral Inpainting

SAM 0.0099 0.0220 0.9987 0.0139 0.0314 0.9970 0.0119 0.0279 0.9853

SIDM 0.0102 0.0231 0.9985 0.0126 0.0286 0.9975 0.0108 0.0249 0.9882

EDM 0.0060 0.0131 0.9995 0.0065 0.0139 0.9994 0.0060 0.0134 0.9965
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