
HAL Id: hal-00631620
https://imt.hal.science/hal-00631620

Submitted on 12 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatically finding clusters in normalized cuts
Mariano Tepper, Pablo Musé, A. Almansa, Marta Mejail

To cite this version:
Mariano Tepper, Pablo Musé, A. Almansa, Marta Mejail. Automatically finding clusters in normalized
cuts. Pattern Recognition, 2011, 44 (7), pp.1372-1386. �10.1016/j.patcog.2011.01.003�. �hal-00631620�

https://imt.hal.science/hal-00631620
https://hal.archives-ouvertes.fr


Automatically finding clusters in Normalized Cuts
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bInstituto de Ingenieŕıa Eléctrica, FI, Universidad de la República, Uruguay

cCNRS LTCI, Telecom ParisTech, France

Abstract

Normalized Cuts is a state-of-the-art spectral method for clustering. By apply-

ing spectral techniques, the data becomes easier to cluster and then k-means

is classically used. Unfortunately the number of clusters must be manually set

and it is very sensitive to initialization. Moreover, k-means tends to split large

clusters, to merge small clusters, and to favor convex-shaped clusters. In this

work we present a new clustering method which is parameterless, independent

from the original data dimensionality and from the shape of the clusters. It

only takes into account inter-point distances and it has no random steps. The

combination of the proposed method with normalized cuts proved successful in

our experiments.

Keywords: clustering, Normalized Cuts, a contrario detection

1. Introduction

Clustering is an unsupervised learning method in which a set of observations

is assigned into subsets (called clusters) so that observations within the same

cluster are similar in some sense. Clustering is an interesting problem for many

domains, such as image and signal analysis, bioinformatics or medical sciences.

It has been applied for image segmentation [1, 2, 3], object class and shape
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recognition [4, 5], gene network analysis [6] and internet databases analysis [6, 7],

among others. Nowadays, the need for exploratory data analysis has become

of extreme importance due to the increase in both volume and variety of data.

Many domains are in need of computational techniques that do not rely on

strong a priori knowledge.

Despite its intuitive simplicity, it is extremely hard to provide a formal defi-

nition of what a cluster is. Different authors use different definitions. Very often

definitions are derived from the algorithm being used, instead of the opposite.

Theoretical methods to assess or classify clustering algorithms have been

developed with interesting results [8, 9]. Unfortunately, the lack of a unified

definition makes it difficult to find a unifying complete framework. An excellent

overview of the clustering field was published in 2009 by Jain [10]. Here we

briefly review two of the main trends in clustering algorithms.

Variations of the minimal spanning tree or limited neighborhood set ap-

proaches have been extensively explored [11, 3]. The criteria in most works are

based on local properties of the graph. Since perceptual grouping implies an as-

sessment of local properties versus global properties, exclusively local methods

must be discarded or patched. For example, Felzenszwalb’s method [3] makes

use of the minimal spanning tree but is forced to add an ad hoc global criterion

to correct local observations.

Normalized Cuts [12, 13] is a state-of-the-art spectral method which provides

a partition of the graph. It analyzes a function that is a trade-off between global

and local graph properties by analyzing the Laplacian of the graph, see Section 2

for further details.

As early as in 1971 Zahn established in a pioneering work [14] the conceptual

grounds on which this work is based. He faced the problem of finding perceptual

clusters according to the “proximity” gestalt principle [15]. He proposed three

key arguments:

1. Only inter-point distances matter. The characteristics of the metric

space should not be used. In other terms, we must look for solutions
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that do not rely on any assumptions about the chosen metric. It imposes

graphs as the only suitable underlying structure for clustering.

2. No random steps. Results must remain equal for all runs of the detec-

tion process. In particular, random initializations are forbidden.

3. Independence from the exploration strategy. The order in which

points are analyzed must not affect the outcome of the algorithm.

The ultimate goal of our work is to propose a clustering method which

follows Zahn’s principles. In recent years, a theory for the quantitative analysis

of gestalts, called Computational Gestalt [16], was developed and since then

many refinements followed. By studying Zahn’s principles in the light of the

Computational Gestalt theory, we introduce a perceptually driven clustering

method. It only takes into account inter-point distances and it has no random

steps. As a consequence, it is independent from the original data dimensionality

and from the shape of the clusters. Although the proposed approach is a general

clustering method, in this work we combine it with normalized cuts.

This work is structured as follows. In Section 2 we review spectral graph

theory and in Section 3 we present a new parameterless clustering method. In

Section 4 we show results and then provide final remarks in Section 5.

2. Spectral Graph Methods

Formally, we want to find clusters in a feature set X = {xi ∈ R
H}i=1...N

where H is the dimension of the feature space. In the following the terms point

and feature have the same meaning and we will use one or the other depending

on the context.

Here we briefly recall spectral graph concepts used for clustering. For further

details, see the extended overview of the spectral graph theory by Chung [17].

Let G = (V,E) be an undirected graph with a vertex set V = {vi}i=1...N ,

where N is the cardinal of V , and an edge set E ⊆ V × V . We consider graphs

to be non-reflexive, i.e. ∀ v ∈ V, (v, v) /∈ E. We also define an edge weighting

function ω : E → R such that ∀ e ∈ E, ω(e) > 0.
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We denote by W ∈ R
N×N the matrix defined by Wij = ω((vi, vj)), where

1 ≤ i, j ≤ N . We denote by D ∈ R
N×N the diagonal matrix such that Dii =

∑

j Wij . The Laplacian of G is defined to be the matrix

L = D−1/2(D −W )D−1/2 = I −D−1/2WD−1/2. (1)

L is symmetric positive semidefinite [1] and its eigenvalues lie in the interval

[0, 2]. Von Luxburg [18] analyzed the advantages of this form of the Laplacian.

Ng et al. [1] and Fowlkes et al. [12] studied the utility of employing multiple

eigenvectors of L to embed each feature into an M -dimensional space (M ≪ N).

To build the embedding, we compute the N × N matrices A and Λ such that
(

D−1/2WD−1/2
)

A = AΛ and the values λi = Λii are sorted in ascending order.

The columns of A are the eigenvectors of L and 1− λi are its eigenvalues. The

M -dimensional embedding is the result of keeping the first M columns of A

forming the matrix AM . The normalized form of AM is defined as

AM
def
= D−1/2AM . (2)

The resulting spectral clustering procedure is as follows:

1. build Go from V = X using ω((vi, vj)) = d(xi, xj) where d is an applica-

tion specific kernel distance,

2. compute the embedding AM from Go,

3. apply a clustering algorithm to the rows of AM , as they form tight clusters.

Each feature is finally assigned to the cluster to which its corresponding row

belongs. This procedure provides a relaxation of minimizing the Normalized

Cut of the original graph [13], given by

NCut(C1, C2)
def
=

f(C1, C2)

f(C1, V )
+

f(C1, C2)

f(C2, V )
(3)

where C1, C2 ∈ V , C1 ∩ C2 = ∅ and f(C,C ′) =
∑

u∈C,v∈C′ ω((u, v)).

Ng et al. [1] and Fowlkes et al. [12] use k-means for the final clustering stage.

It is well known that k-means presents two drawbacks: (1) it is very sensitive to

the initialization and (2) the number of clusters has to be manually specified.
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The former is usually addressed by performing several random initializations

and then choosing the optimal partition with respect to Ncut, see Figure 1. The

latter is an open question as choosing k is a difficult model-selection problem.

Popular approaches to circumvent this issue are Akaike’s Information Crite-

rion (AIC), Bayesian Information Criterion (BIC) [19] or Minimum Description

Length (MDL) [20]. While these methods rely on firm theoretical background,

results usually differ from a human made choice.

Figure 1: Example of image segmentation from 3×3 color patches, obtained using Normalized

Cuts and k-means with k = 4. In each example k-means was executed 5 times and the

segmentation that minimizes the Normalized Cut is chosen. Due to the clusters difference in

density and in cardinality, the method yields unstable results.

Nadler and Galun [21] showed that spectral methods may not reveal clusters

of different sizes and scales. This assertion holds when clusters are intertwined

or sufficiently near each other. However in practice, when clusters (even of

different sizes and scales) are well separated, spectral methods perform well.

Ozertem et al. [22] propose to use the Mean Shift algorithm to build the

adjacency matrix. Mean Shift [2] detects clusters by computing what Comaniciu

and Meer call attraction basins. Vertices that lie on different attraction basins

are removed from the graph. The matrix is built by using the groups found with

Mean Shift, instead of directly using a kernel distance, for determining locality.

3. A Contrario Clustering

In this section we present a method that overcomes the issues presented in

the previous section. It is not dependent of random initializations and clusters

are detected without manually specifying its number. The presented method is

general, in the sense that it can be applied to any feature set X equipped with

a suitable distance d.
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We start by presenting a method in which ours is inspired. Then we intro-

duce theoretical definitions in Section 3.1. The automatic choice of detection

thresholds is discussed in Section 3.2. Sections 3.3 and 3.4 address the simplifi-

cation and revision, respectively, of the obtained clusters.

In the scope of the Computational Gestalt programme [23], Cao et al. pro-

posed a cluster detection method [5]. The main idea is to measure the statistical

significance of a set of points as being a cluster. Let us recall its basic definition.

For k ≤ N ∈ N and p ∈ [0, 1], let us denote by

B(N, k; p)
def
=

N
∑

j≥k

(

N

j

)

pj(1− p)N−j (4)

the tail of the binomial law. See Desolneux et al.for a thorough study of the

binomial tail and its use in the detection of geometric structures [23].

Let R be a set of H-dimensional hyper-rectangles parallel to the coordinates

axes and centered at the origin.

Definition 1. Let C ⊂ X be a subset of k points out of the N data points. We

call number of false alarms (NFA) of C,

NFA(C)
def
= |R| ·N · min

xi∈C
R∈R

C⊂R+xi

B(N − 1, k − 1, πi) (5)

where R + xi is the rectangle R translated to xi and πi = Pr(x ∈ xi + R) is its

probability. We say that C is an ε-meaningful group if NFA(C) < ε.

The term |R|·N is the number of tests and the remaining part of Equation 5

represents a Probability of False Alarms (PFA). B(N − 1, k− 1, πi) corresponds

to the probability that at least k − 1 out of the N − 1 remaining points fall into

xi+R. The detection algorithm consists in exploring the group of points given by

a dendrogram, identifying ε-meaningful groups as clusters and then performing

an additional pruning, based on the inclusion properties of the dendrogram. A

similar technique will be described in Section 3.3.

Notice that the above detection rule does not conform to Zahn’s first ar-

gument. Indeed, inter-points distances are not directly taken into account and

hyper-rectangles are used instead.
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Another drawback of this approach is that a set R of hyper-rectangles par-

allel to the axes must be properly chosen. This choice is application specific

since R is intrinsically related to cluster size/scale. For example, an exponen-

tial choice for the discretization of the rectangle space is made by Cao et al. [5]

introducing a bias for small rectangles (since they are more densely sampled).

Each cluster must be fitted by an axis-aligned hyper-rectangle R ∈ R, mean-

ing that clusters with arbitrary shapes are not detected. Even hyper-rectangular

but diagonal clusters may be missed or oversegmented.

The probability law πi for each hyper-rectangle R ∈ R, assuming no specific

structure in the data, must be known a priori or estimated. The complexity

of computation of the probability of an hyper-rectangle then depends on the

dimension H and suffers from the “curse of dimensionality”.

3.1. Graph-based A Contrario Clustering

We now propose a new method to find clusters in graphs that is indepen-

dent from their shape and from the dimension H. We first build a weighted

undirected graph G = (V,E) where vi ∈ V is identified with a feature xi ∈ X

in a metric space (X, d) and the weighting function ω is defined in terms of the

corresponding distance function, namely ω((vi, vj)) = d(xi, xj).

Although the method may be applied to any metric space, in this work we

will use the rows of AM as the input features X = {xi}i=1...N , by identifying xi

with the i-th row of AM and by defining d as the usual Euclidean distance in

R
M . Notice that this distance comes from the embedding described in Section 2

and may represent a more complex semidistance in the original feature space.

A subgraph G′ of G is a connected graph G′ = (V ′, E′) in which V ′ ⊆ V

and E′ ⊆ V ′ × V ′.

Definition 2. We define the non-compactness of a subgraph G′ as

c(G′)
def
=

Ω(E′)

Ω(E)
where Ω(E) =

∑

e∈E

ω(e). (6)

We say G′ is p-compact if c(G′) = p.
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Non-compactness is an estimation of the local vertex density, which plays

the role of the relative volume πi of the hyper-rectangles in Definition 1. It can

be interpreted in the spirit of non-parametric density estimation. Parzen meth-

ods [24] locally estimate density at a given point by computing the distances to

its neighbors

p(x) ≈ 1

Nh

N
∑

i=1

Q

( ||x− xi||
h

)

, (7)

where Q is a smoothing kernel. Choosing a kernel Q that evaluates to one in

G′ and to zero elsewhere, and picking x ∈ X, yields

p(x) ≈ 1

Nh2

K
∑

i=1

ω((v, vi)), (8)

where v ∈ V is the vertex associated to feature x. Finally

Pr(v ∈ V ′) ≈ 1

Nh2

K
∑

j=1

K
∑

i=1

ω((vj , vi)). (9)

By normalizing Pr(v ∈ V ′), c(G′) is obtained.

In our approach, non-compactness plays an important role in cluster detec-

tion. Informally, a cluster is a subgraph with two properties: (1) its vertices

are sufficiently near each other with respect to the remaining vertices, i.e. small

non-compactness, and (2) the number of its vertices is sufficiently large.

A detection scheme must propose a balance between the density of the cluster

and its size. A small set must be very dense to be perceptually noticeable while

larger sets are more clearly perceived even if they are less dense. A set of points

will be more striking, and more compact, as it gets farther away from the rest

of the points.

The non-compactness of a subgraph models how tight its vertices are but

is not sufficient to characterize clusters. This can be seen in Figure 2 where

G′
1 = (V ′

1 , E
′
1) and G′

2 = (V ′
2 , E

′
2) are two different subgraphs such that Ω(E′

1) =

Ω(E′
2). Suppose they are respectively embedded in two graphs G1 = (V1, E1)

and G2 = (V2, E2) such that Ω(E1) = Ω(E2), then G′
1 would have the same

non-compactness as G′
2 while having more nodes.
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Figure 2: Two different subgraphs G′

1
= (V ′

1
, E′

1
) and G′

2
= (V ′

2
, E′

2
) such that Ω(E′

1
) =

Ω(E′

2
) = 4 + 2

√
2. Suppose they are respectively embedded in two graphs G1 = (V1, E1) and

G2 = (V2, E2) such that Ω(E1) = Ω(E2), G′

1
would have the same non-compactness as G′

2

while having more nodes.

Suppose we wanted to statistically model all possible instances of clustered

data. First, we would need a model for each possible cluster shape (e.g. Gaus-

sian). Each individual model would have its own parameter set. Next, since

we seek for a general model, it must support data distributed in multiple clus-

ters with different shapes. In other terms, we need to integrate the individual

models into a mixture. For example, k-means is aimed to detect mixtures of k

Gaussian distributions.

These different mixtures can be seen as a parametric family F of distri-

butions. This family is parametric on the number of clusters and on the pa-

rameters of the distribution modeling each cluster. Such a family has colossal

cardinality and parameter set. Even if we restrict ourselves to a mixture of k

Gaussian clusters for H dimensional data, the problem is hard enough. Since

there are H(H + 1)/2 + H parameters for each Gaussian (determined by an

H ×H covariance matrix and H × 1 mean vector), the number of parameters

is k(H(H + 1)/2 +H) for each k. A family of such mixtures, parametric on k,

is already untestable in practice.

Assume we were to model the problem described above as a classical hy-

pothesis test:

H1: the observed features have a particular distribution F ∈ F , i.e. the data is

clustered.

H0: the observed features are distributed more randomly, e.g. uniformly.

Modeling H1 means to model F . Modeling F , even if it was feasible, would

require an a priori characterization of what a cluster is. Due to the reasons that
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have just been exposed, we are not interested in defining such a model. We prefer

instead to follow the classical claims of the Computational Gestalt School [23];

our detection algorithm will be driven by the Helmholtz principle: no perception

in white noise. We will only concentrate on modeling H0 and consider that low

probabilities of occurrence under H0 are indeed causal instead of casual.

Testing randomness to detect clusters is not a new concept. To cite a

few, Hoffman, Jain et al. [25, 26] perform such kind of tests. The works by

Cao et al. [5] and by Desolneux et al. [23] also follow this line of research.

We are interested in a general clustering method but, in accordance to our

model, in applications where the cluster shapes and the number of clusters are

known a priori, the full hypothesis test could be performed, using similar but

more simple a contrario techniques.

Given a subgraph G′ and its non-compactness, we consider its number of

vertices k as a realization of a random variable K. We can then model the

probability that a p-compact subgraph G′ has at least k vertices due to a real-

ization of randomness. We denote this probability by Pr(G′ | H0).

Definition 3. Let G′ be a p-compact subgraph of G, we define the probability

of false alarms (PFA) of G′ as

PFA(G′)
def
= Pr(G′ | H0) = B(|V |, |V ′|; p), (10)

where | · | denotes the cardinality of a set.

The probability of false alarms quantifies the unlikeliness of occurrence of

a p-compact subgraph G′ of G with at least |V ′| nodes among |V | under H0.

In other terms the unlikeliness of occurrence of a configuration of at least |V ′|
features among |V | with density p.

There have been previous attempts to automatically detect the number of

clusters in Normalized Cuts (or spectral clustering), e.g. by Zelnik-Manor and

Perona [27]. Their work has similar goals but starts from different requirements:

they indeed make use of the characteristics of the eigenspace. Moreover, since

their method is based on selecting the minimum of an alignment cost function,
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it is not able to detect non-clustered data as such. Our method is specifically

designed for this task.

3.2. Learning detection thresholds

To detect unlikely dense subgraphs, a threshold is necessary on the PFA. In

the classical a contrario framework, a new quantity is introduced: the Number

of False Alarms (NFA), i.e. the product of the PFA by the number of tests (see

Definition 1). The NFA has a more intuitive meaning than the PFA, since it is

an upper bound on the expectation of the number of false detections [23]. The

threshold is then easily set on the NFA.

To use the NFA one has to be able to compute (or at least analytically esti-

mate) the number of tests being performed. In our setting, this is not possible,

since it is equivalent to computing the number of subgraphs for a graph, which

is an astronomical quantity (e.g. approximately 10300 for N = 1000).

An alternative solution, proposed by Burrus [28], consists in estimating the

threshold directly on the PFA by Monte Carlo simulations, following the ac-

tual search heuristics instead of trying to bound the total number of tests in

a full search. Furthermore, this solution allows to estimate not only a global

threshold but partial thresholds, by splitting the detected subgraphs into dif-

ferent categories, each with a dedicated threshold. In this work we follow this

approach.

Let G be the set of all subgraphs of a graph G and let JK : G → {1, 2, . . . ,K}
be a hash function used to divide G into K categories. We define the exploration

strategy S ⊆ G as a set of subgraphs to be analyzed during detection and

learning. In Section 3.3 we analyze exploration strategies in depth. As an

example we define the basic universal strategy SU = G.
We already stated that our detection algorithm is ruled by the principle of

no perception in white noise. It is therefore clear that subgraphs in S with

a PFA that is likely to occur in white noise have to be discarded. A direct

approach would be to generate several random graphs, compute the PFA of

their subgraphs and select a threshold such that all of them are discarded (up
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to a certain confidence level).

Given a hash function JK and an exploration strategy S, Algorithm 1

performs exactly that same procedure to compute a set of thresholds δ(ε) =

{δk(ε)}k=1...K . Thresholds are first initialized. For each category k, we run Q

simulations. For each simulation q = {1 . . . Q}, the number dq of subgraphs G′

such that JK(G′) = k and PFA(G′) < δk(ε) is counted. Then the empirical

mean mk and deviation sk of d = {dq}q=1...Q are computed.

An upper bound u of the expectation µk of mk is computed by performing a

Student’s t-test. We are looking to approximate ε/K by u and δk(ε) is adjusted

accordingly. We refer to Burrus [28] for further details.

Algorithm 1 Compute δ(ε) for N vertices using exploration strategy S by Q

Monte Carlo simulations.
1: for all k ∈ {1 . . .K} do
2: initialize δk(ε)

3: repeat

4: for all q ∈ {1 . . . Q} do
5: build a graph Gq by sampling N vertices from the distribution of H0.

6: apply S to Gq.

7: dq ← #{G′ ∈ S, PFA(G′) < δk(ε) ∧ JK(G′) = k}
8: end for

9: Compute the empirical mean mk and deviation sk of d = {dq}q=1...Q

10: Compute a confidence interval on the expectation µk of d using the

property P (µk ≤ mk) = FQ−1

(

mk−µk

sk

√
Q− 1

)

where Fn(x) is the dis-

tribution function of a Student law with n degrees of freedom.

11: For a chosen confidence level, if the estimated upper bound of µk is

greater than ε/K, increase δk(ε) otherwise decrease δk(ε).

12: until convergence of δk(ε)

13: end for
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Definition 4. We say that a subgraph G′ is an ε-meaningful cluster if

PFA(G′) < δJK(G′)(ε) (11)

for a properly computed set of thresholds δ(ε). We define the number of false

alarms (NFA) of G′ as

NFA(G′)
def
=

ε

δJK(G′)(ε)
PFA(G′) (12)

Notice that subgraphs consisting of a single node must certainly not be

detected. From Definition 3 they cannot be detected, i.e. B(|V |, 1; 0) = 1. As

we look for rare events, subgraphs with probability of occurrence in noise equal

to 1 are never detected.

Lemma 1. The expected number of ε-meaningful clusters in a random graph G

is lower than ε.

Proof. By construction of δk(ε), the number of meaningful subgraphs G′ in a

random graph G is lower than ε/K. By linearity of expectation, if there are less

than ε/K errors in average for each category, then there are globally less than

ε errors in average.

Figure 3 depicts the profile of the learned set of thresholds δ(ε) for the

exploration strategy explained in Section 3.3 and different graph sizes. There

are N vertices, K = 10 categories and the hash function for a graph G′ = (V ′E′)

is simply JK(G′) = ⌊(|V ′|+ 1) ·K/N⌋. Medium-small and compact subgraphs

are more frequent than large and compact subgraphs causing that thresholds for

the first categories are more restrictive than thresholds for the last ones. Note

that the evolution of the set of thresholds δ(ε) with size is smooth, allowing the

computation of intermediate sets of thresholds by interpolation.

The role of the hash function is to correct a bias that might be introduced

by the exploration strategy. If the sizes of the clusters one seeks to detect are

well enough sampled by the exploration strategy, choosing K = 1 should suffice.
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Figure 3: Learned set of thresholds δ(ε) for ε = 1 for sizes ranging from N = 100 to N = 300

(in negative logarithmic scale). Thresholds evolve smoothly with size, consequently they can

be safely interpolated for intermediates sizes. Larger subgraphs are rarer and thresholds are

therefore less restrictive than for smaller subgraphs.

3.3. Eliminating redundancy

While each meaningful cluster is relevant by itself, the whole set of meaning-

ful clusters exhibits, in general, high redundancy [5]. Indeed, a very meaningful

cluster G1 usually remains meaningful when it is slightly enlarged or shrunk

into a graph G2. If, e.g. G2 ⊂ G1 , this question is easily answered by compar-

ing NFA(G1) and NFA(G2), see Definition 4. The NFA is used instead of the

PFA to allow comparisons that span different categories. The group with the

smallest NFA must of course be preferred. The above criterion is implemented

by the following pruning rule:

for all ε-meaningful clusters G1, G2 do

if G2 ⊂ G1 ∨ G1 ⊂ G2 then

eliminate argmax (NFA(G1),NFA(G2))

end if

end for
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that indeed produces the desired result but is computationally intractable.

Moreover, for a given graph, exploring the whole set of its subgraphs to compute

each PFA is already intractable. An exploration algorithm is therefore needed.

Hierarchical clustering methods are well suited for this task.

Definition 5. A hierarchy T of a graph G = (V,E) is a set such that ∀ T ∈ T

∃ v ∈ V, T = {v}, or ∃ T1, T2 ∈ T , T = T1 ∪ T2. (13)

Depending on the direction they build the hierarchy, these clustering meth-

ods can be agglomerative (bottom-up) or divisive (top-down). The former are

usually computationally simpler.

Any hierarchical algorithm [10] can be used. In this work we focus on the

agglomerative algorithm called minimal spanning tree. Zahn’s work [14] con-

centrates on stating the good properties of minimal spanning trees to detect

perceptual clusters. The construction of the minimal spanning tree starts by

considering each single point as a cluster and iteratively merges the pair of

clusters containing the closest nearest-neighbor points. It can be found using

Kruskal’s method (Figure 4).

Figure 4: Part of a minimal spanning tree. The blue node set and the red node set are linked

by the dashed edge, creating a new node in the minimal spanning tree.

We will restrict ourselves to explore the node sets contained in a hierarchy

and to compute PFAs on the subgraphs induced by them. Finally we apply the

pruning rule profiting from the inclusion properties of the tree structure.

Definition 6 (Exploration strategy). Given a graph G = (V,E), we denote by

GC = (C,E′) the subgraph such that

∀ (ca, cb) ∈ E, ca ∈ C ∧ cb ∈ C ⇒ (ca, cb) ∈ E′, (14)
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and we say that GC is induced by C. For a given hierarchy T we define the

exploration strategy as ST = {GT }T∈T .

Definition 7 (Maximal ε-meaningful cluster). For a learned set of thresh-

olds δ(ε), we say that GT ∈ ST is a maximal ε-meaningful cluster if

1. GT is an ε-meaningful cluster, see Definition 4,

2. all meaningful descendants are less meaningful,

∀ T ′ ∈ T , T ′ ⊂ T, NFA(GT ′) > NFA(GT ),

3. all meaningful ancestors are less meaningful,

∀ T ′ ∈ T , T ⊂ T ′, NFA(GT ′) ≥ NFA(GT ).

The proposed clustering algorithm simply consists on detecting maximal ε-

meaningful clusters. Definition 7 is closely related to the maximality rule by

Cao et al. [5] but is simpler and it might be regarded as an implementation of

the exclusion principle [23]. In our experiments, we found no need to include a

measure of meaningfulness for a pair of subgraphs.

According to Definition 6 the subgraph GC is the largest subgraph in G

not containing more vertices than C. Why not use instead the partial trees

provided by the hierarchy as in Figure 4? Because in the father (represented

in white) inter-cluster edges (dashed line) are underrepresented with respect to

intra-cluster edges (solid lines).

To explain this situation, let G = (V,E) be a hypothetical base graph. Let

A be the blue node set and B the red node set respectively and let them induce

subgraphs GA = (A,EA) and GB = (B,EB). Let us denote the father of both

GA and GB by GA∪B = (A ∪ B,EA ∪ EB ∪ EAB) where EAB = {(vA, vB) ∈
E, vA ∈ A ∧ vB ∈ B}. Then,

c(GA∪B) =
Ω(EA) + Ω(EB) + Ω(EAB)

Ω(E)
. (15)

Let us compare PFA(GA∪B) with PFA(GA). The non-compactness c(GA∪B)

grows by Ω(EB)+Ω(EAB)
Ω(E) with respect to c(GA). Since B is tight, Ω(EB) is small

and the growth is mainly determined by Ω(EAB). Meanwhile, EA ∪EB ∪EAB
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grows by |EB | + |EAB | with respect to EA. If |EAB | is small (in our case 1),

the growth in size is mainly determined by |EB |. The same reasoning can be

applied to PFA(GA∪B) and PFA(GB). In summary, Ω(EAB) has to be very

large to compensate for the relatively large growth in size. If it is not the case,

the father will be more meaningful than its two children. Only very separated

clusters will be detected separately. To correct this situation, inter-cluster edges

have to be better sampled. A reasonable choice is using the subgraphs induced

by A and B.

Comaniciu and Meer [2] state that “arbitrarily structured feature spaces can

be analyzed only by nonparametric methods since these methods do not have

embedded assumptions”. They classify nonparametric clustering methods into

two classes: hierarchical clustering and density estimation. Regarding the first

class, they regard the detection of clusters in a hierarchy as being a non-trivial

task. The proposed approach, maximal ε-meaningful clusters, merges these two

main trends. It detects clusters in a hierarchy by using density estimation. The

hierarchy provides candidate groups in a natural manner thus, from one side,

allowing a reduced effort in the density estimation step and, from the other side,

providing the cardinality of such groups as important information.

3.4. Revising elongated clusters

Non-elongated clusters are preferred by our detection algorithm. Elongated

clusters are separated in several non-elongated maximal meaningful clusters as in

Figure 5(a). Detecting non-elongated clusters is equivalent to detecting clusters

with the same intrinsic dimension as the embedding. Since in the embedding

(see Section 2) some clusters are indeed elongated, a revision is needed.

For a given graph G = (V,E), let G1 = (V1, E1) and G2 = (V2, E2) be two

subgraphs of G. We define

L(G1, G2)
def
= min

(

max
e∈E1

ω(e), max
e∈E2

ω(e)

)

. (16)

This equation is very similar to the one proposed by Felzenszwalb [3] to detect

clusters in a hierarchical structure except there is no extra scale parameter.
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(a) (b)

Figure 5: Maximal meaningful clusters (a) before and (b) after revising elongated clusters.

In (a) 10 clusters are found while in (b) only 3 remain.

Let GT = (VT , ET ) be a maximal ε-meaningful cluster, GF = (VF , EF ) its

father and GS = (VS , ES) its sibling in T . Let us define

GT∪S
def
= (VF , ET ∪ ES ∪ ETS) (17)

where ETS = {e ∈ EF , ω(e) ≤ L(GT , GS)}. Long edges connecting the ex-

tremes of the GF are eliminated from GT∪S by using a local connection between

GT and GS . The effect of this local connection rule is shown in Figure 6.

If PFA(GT∪S) < PFA(GT ), GF is replaced in ST by GT∪S and maximality

in ST is recomputed. This procedure is repeated until convergence. Note that

convergence is guaranteed since changes are propagated up in the tree, stopping

at the root in the worst case. This heuristic is able to correct for oversplitting

of elongated clusters present in the embedding, as seen in Figure 5(b).

Figure 6: Effect of locally connecting clusters. The subgraphs GT (in blue) and GS (in red)

are siblings in T . For clarity, only inter-cluster edges are depicted. Left, their father GF in

T . Right, the locally connected graph GT∪S .
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Algorithm 2 summarizes the complete proposed detection approach.

Algorithm 2 For a point set X and an appropriate kernel distance d compute

the setM of maximal ε-meaningful clusters.

1: build Go from X using d

2: compute the embedding AM from Go {see Equation 2}
3: build Ge from Xe using the rows of AM and Euclidean distance in R

M

4: compute the hierarchy T from Ge

5: M = ∅
6: for all GT ∈ ST do

7: if GT is maximal ε-meaningful then

8: add GT toM
9: end if

10: end for

11: repeat

12: choose GT ∈M
13: find its sibling GS , its father GF in ST and compute GT∪S

14: if PFA(GT∪S) < PFA(GT ) then

15: replace GT (and possibly GS) by GT∪S inM
16: replace GF by GT∪S in ST
17: end if

18: until no more replacements are performed

4. Experimental Results

As every spectral clustering technique, there are two main values to be tuned:

the scale of the kernel distance and parameter M (see Equation 2 and Algo-

rithm 2). The former was fixed by manually choosing the scale that yields the

best results with k-means. Anyhow, once the scale fixed, all compared methods

analyze the transformed feature space (i.e. the embedding) an should provide

results independently of that choice. The parameter M can be interpreted as
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an estimation of the number of groups [1]. For example, when using k-means,

M is set usually set equal to k. In the case of meaningful clusters, the value

of M was determined empirically and can be seen as an overestimation of the

largest possible number of groups.

The proposed approach is successful at finding perceptually clear 2D clusters

even when clusters have arbitrary shapes (Figure 7). By only fixing the param-

eters needed to compute the embedding, i.e. its dimension M and the variance

of the Gaussian kernel used for the distance, the clustering is successful. No

extra parameter is needed as fixing ε = 1 is sufficient for stable detections.

Figure 7(e) presents an interesting case since some maximal clusters are not

meaningful (represented in cyan, black and orange). The scene is composed

of a mixture of three Gaussians. Peripheral points, i.e. located in low density

areas, are harder to merge. Note that spectral methods are unable to deal with

highly intertwined clusters as features are mapped to a single manifold in the

Euclidean embedding.

(a) (b) (c) (d) (e)

Figure 7: 2D points clustering examples. In (a), (b), (c) and (d) all groups are meaningful. In

(e) maximal clusters are shown: only red, green and blue groups are meaningful while cyan,

black and orange are not and are finally discarded by our algorithm.

Figure 8 depicts a comparison between results using k-means and our algo-

rithm. Both start from the same embedding. We consider that there are 15

clusters in Figure 8(a). For k-means the correct number of clusters was set.

The combination of groups with very high density and groups with low density

causes the random initialization in k-means to fail, see Figure 8(b). It creates

under-split clusters, e.g. rectangle A, and over-split clusters, e.g. rectangle B.

Maximal ε-meaningful clusters perform correctly with no parameter tuning (i.e.
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the number of clusters is automatically found by the algorithm), see Figure 8(c).

(a)

A

B

(b) (c)

Figure 8: (a) Original scene. Starting from the same embedding, result with (b) k-means,

where we manually set the correct number of clusters, and (c) maximal meaningful clusters.

k-means incorrectly merges some clusters (zone A) and incorrectly splits others (zone B).

The next experiment aims at comparing our results with Mean Shift [2, 29].

Mean Shift performs a non-parametric density estimation (using sliding win-

dows) and finds its local maxima. Clusters are determined by what Comaniciu

and Meer call “basins of attraction” [2]: points are assigned to a local maximum

following an ascendent path along the density gradient1.

Figure 9 presents an experiment were Mean Shift is used to cluster the

dataset in Figure 8(a). Different density estimations were performed, by varying

the kernel size. Clearly, results are suboptimal. The main disadvantage we see

in the density estimation step is that a global kernel size must be chosen. Such

a strategy is unable to cope with clusters of different densities and spatial sizes.

Choosing a small kernel causes to correctly detect dense clusters at the price

of oversplitting less denser ones. On the contrary, a large kernel corrects the

oversplitting of less denser clusters but introduces undersplitting for the denser

1www.mathworks.com/matlabcentral/fileexchange/10161-mean-shift-clustering
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ones. Our method also uses non-parametric density estimation, but the scale

is not fixed in advance. As shown by the Parzen windows interpretation of the

non-compactness, the “kernels” we use are determined by the candidate sets

given by the hierarchy and thus multiscale density estimation if performed.

(a) (b) (c)

Figure 9: Results with Mean Shift for the point set from Figure 8(a). The local maxima of the

estimated density are signaled by x’s. Even when varying the kernel size, results are clearly

suboptimal.

In Figure 10 we show segmentation results on synthetic images. A precision

should be made regarding this experiment as well as all segmentation experi-

ments in this paper: our goal here is not to present a new segmentation method,

but just to illustrate the performance of proposed clustering technique by means

of segmentation examples. For this reason, we simply consider that the vectors

to be clustered are the set of single color image pixels or 3 × 3 color image

patches, depending on the experiment. Notice that there is no term imposing

image spatial connectivity of clusters.

If the random initialization procedure picks an appropriate seed, Normalized

Cuts with k-means may perform reasonably well when setting the correct k

(Figure 10). Still, sometimes the resulting clusters can be degraded by noise, as

in the top figure on the second column. When k is not well chosen (k = 3 in our
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example) results are poor, as on the third column. Results on the fourth column

show that our method is successful without any further parameter tuning.

Figure 10: Comparison of image segmentations. On the first column,original images with 5

and 4 regions respectively. On the second column, segmentations obtained with k-means by

correctly setting k to 5 and 4 respectively. On the third column, segmentations obtained with

k-means by setting k = 3. On the fourth column, segmentations obtained with our method.

Figure 11 presents more image segmentation results. Results on the second

column are among the best we could obtain with k-means, by carefully choosing

k by hand (we set k to 3, 6, 6, 6 and 11 respectively). In general, results are

correct. In all cases except for the one on the first row, the number of clusters

k had to be overestimated with respect to the number of visually perceived

regions. In some cases, some regions are overconnected (see the blue region on

the first row and the red region on second row) a fact that could not be corrected

by slightly increasing k.

Results on the third column were obtained with Zelnik-Manor and Perona’

method (ZMP) [27]2. In this case the features are individual color pixels, since

we did not find better results by using patches. In one case, on the fifth row,

the method oversegments the image, while in the others the image is underseg-

mented. In these cases, boundaries between regions seem somewhat away from

perceived regions.

The proposed algorithm, whose results are depicted on the fourth column,

performs well in all cases, being able to correctly separate perceptually evident

2http://webee.technion.ac.il/~lihi/Demos/SelfTuningClustering.html
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clusters. Contrarily to the other two methods, small clusters are not arbitrarily

merged to the closest larger cluster but remain undetected. In simpler terms,

some patches are detected as not belonging to any cluster: they are considered as

noise. In accordance to this claim and since we are clustering patches (without

any kind of rotation invariance) the ones that lie on the boundaries between

objects are not classified. This is a desirable feature since boundary patches are

of different nature from non-boundary patches.

Figure 12 presents more segmentation results on images from the COIL-100

database. The same remarks from the previous examples hold. In general, our

method correctly finds the clusters and outperforms ZMP, although in some

cases relatively big areas remain detected as unclustered patches.

The Berkeley Segmentation Dataset [30] is often used to perform segmen-

tation experiments. Nowadays, to our knowledge, an exhaustive review of the

clustering methods reported in the literature shows that there exists no cluster-

ing approach that is able to correctly and automatically segment all images in

such a varied and complex dataset. Hence, we selected a subset of this database

that we consider that should be easier to segment. For the sake of completeness,

experiments on this subset are also included.

For the final set of experiments we compare our method with the algorithm

by Cour et al. [31]. They use the Normalized Cut framework, but using a

multiscale decomposition3. The final embedding for clustering is constructed by

using the information on the different scales and applying inter-scale constraints

to ensure overall consistency. The final clustering step is performed by using the

discretization algorithm by Yu and Shi [32], which seeks the discrete solution

closest to the continuous optimum by rotating the normalized eigenvectors. In

their algorithm the number of clusters is an input parameter and must be equal

to the dimensionality of the embedding; this choice does not necessarily lead

to optimal results. Moreover, as pointed out by Zelnik-Manor and Perona, this

iterative method can easily get stuck in local minima and thus does not reliably

3www.seas.upenn.edu/~timothee/software/ncut_multiscale/ncut_multiscale.html
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find the optimal alignment [27]. This claim was confirmed in our experiments.

In Figures 13, 14 and 15 we use Cour’s algorithm to construct the embed-

dings and then compare the clustering results obtained with different methods:

(a) Yu and Shi’ algorithm (YS) [32]; (b) Zelnik-Manor and Perona’ algorithm

(ZMP), restricted to the final assignment of points to clusters [27]; (c) maximal

meaningful clusters, revising elongated clusters (MMC+R); (d) maximal mean-

ingful clusters, without revising elongated clusters (MMC–R), i.e. by omitting

lines 11 to 18 on Algorithm 2.

It is important to note that we do not propose a specifically designed method

to solve the final assignment problem in Normalized Cuts, but a general clus-

tering algorithm. In this work, we use this algorithm to cluster sets of point

within the Normalized Cuts framework.

In Figures 13 and 14, the spectral embedding is constructed with M =

3. This is based on two reasons. First, choosing three regions seems to be a

reasonable choice in both experiments. Second, visual inspection of point clouds

is easier (otherwise, dimensionality reduction techniques should be applied and

results would actually depend also on the performance of these techniques).

By looking directly at the embeddings in Figures 13 and 14, it is straight-

forward to see that the clusters detected by YS and by ZMP differ from the

results that one should have expected. The proposed method yields detections

which seem to be more adequate to the point clouds structure. In Figure 13

we perceive that the segmentation obtained with the elongated clusters revision

step (Section 3.4) is globally better than the one which omits this step. The

opposite situation occurs in Figure 14, where disabling the revision allows to

detect the balcony. As a side effect, the sky is split in three regions, which

roughly correspond to different brightness resulting from the degradé of the sky.

In Figure 15, the embeddings are constructed with M = 10. In some cases,

YS and ZMP perform better while in others the proposed method produces more

satisfactory results. All methods oversplit or undersplit clusters in different

cases. In general, we think there is no clear winner for these relatively complex

scenes. However, both in ZMP and in the proposed approach, contrarily to
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YS, the number of clusters is not chosen in advance. Moreover, in contrast to

ZMP, our method is general in the sense that it was not specifically designed

for Normalized Cuts and can be used in other scenarios.

5. Final Remarks

The proposed method satisfies Zahn’s requirements for a perceptual cluster-

ing technique. On the one hand, the algorithm does not involve any random

choice since it is completely deterministic. On the other hand, once distances

have been computed, the method is independent from the dimension of the

points (in this case, the dimension of the embedding). Its running time is not

affected by an increase in dimensionality: it does not suffer from the “curse of di-

mensionality”. In addition using a more complicated, time consuming distance

function is transparent to our method.

The number of clusters is automatically determined, eliminating a classical

parameter that is usually hard to choose. It is replaced by ε which has a more

intuitive meaning: it controls the average number of false detections. Tuning

its value is not necessary since setting ε = 1 is sufficient in practice.

Detection thresholds are easily computed from ε by performing Monte Carlo

simulations. These thresholds are well adapted to accept/reject non-clustered

data. Experimental results support this claim. Indeed, our method correctly

finds the number of clusters and the detected clusters are perceptually signifi-

cant. Moreover, detections are highly stable since clusters have NFAs well below

the estimated thresholds.

Results show that the technique is shape independent. Although our base

algorithm has a bias towards non-elongated clusters, a simple heuristic rule is

able to correct that situation and yield correct results for a wide range of shapes.

Finally, the exploration rule in Section 3.3 allows for a reasonable compu-

tational complexity of O(N2 · logN), detailed in Appendix A. When N is

large, although the total complexity is a low-degree polynom, handling a fully

connected graph is costful, no matter how simple the computed operations are.
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The implementation in its current state can not handle graphs with more than

twenty thousands nodes. The computation time of maximal meaningful clusters

for a graph of such size takes between one and three minutes.

Appendix A. Temporal complexity

Kruskal’s algorithm for computing the minimal spanning tree has a complex-

ity of O(|E| · log |E|), as the edge set E in G must be sorted. There are faster

algorithms such as Prim’s but optimal computation of the minimum spanning

tree is not the goal of this work. Kruskal’s algorithm is sped-up by using a

union-find algorithm on a disjoint-sets data structure [33]. After sorting edges,

union-find allows to build the minimal spanning tree T in quasi-linear time.

More precisely, its worst-case complexity is O(|E| · α(|E|)) where α is the ex-

tremely slow-growing inverse Ackermann function. In practice α(M) < 4.

Computing the set of edges of each node in T can be done in O(|E| · log |E|).
The computation of the binomial tail is done by using the incomplete beta

function which is constant in time [34].

Since there are |V | nodes in G, |T | = 2|V | − 1. Computing PFA requires

therefore 2|V |− 1 computations. All nodes in T are examined during the maxi-

mality check, which also amounts to 2|V |−1 computations. Maximal meaningful

clusters algorithm itself is therefore linear in the number of nodes, i.e. O (|V |).
As G is fully connected, |V | ≤ |E| = |V |·(|V |−1)

2 and since |V | = |X| = N ,

O(|E| · log |E|) = O
(

N2 · log(N)
)

.
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Original image k-means ZMP MMC

Figure 11: Comparison of image segmentations from 3 × 3 color patches. Results with k-

means were obtained by tuning k by hand. In all examples, for maximal meaningful clusters

non-detected areas are depicted in black.
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Original image k-means ZMP MMC

Figure 12: Comparison of image segmentations from 3 × 3 color patches. Results with k-

means were obtained by tuning k by hand. In all examples, for maximal meaningful clusters

non-detected areas are depicted in black.
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Figure 13: In the original image, we perceive two or three main regions: the plane and one

or two regions on the textured sky. On the center column, the point cloud on the left, which

corresponds to the airplane, is clearly separated from the rest. Neither YS nor ZMP detect it

as an individual cluster. The proposed method is able to detect it as a separate cluster.
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Figure 14: Four main regions are perceived in the original image: sky, church, balcony and

bottom right dark area. On the center column, the point cloud on the left, which corresponds

to bottom right are on the original image, is clearly separated from the rest. Neither YS nor

ZMP detect it as an individual cluster. The proposed method is able to detect it as a separate

cluster. In MMC–R, the balcony stands out as a separate region, and the sky is split in three

regions (due to the degradé of the sky).
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Original image YS ZMP MMC+R MMC–R

Figure 15: All compared methods produce better results for some images and worst ones for

others. None of them clearly outperforms the others: depending on the image, clusters are

over or undersplit.
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