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WAVELET ESTIMATION OF THE LONG MEMORY PARAMETER FOR
HERMITE POLYNOMIAL OF GAUSSIAN PROCESSES

M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

ABSTRACT. We consider stationary processes with long memory which are non—Gaussian and
represented as Hermite polynomials of a Gaussian process. We focus on the corresponding
wavelet coefficients and study the asymptotic behavior of the sum of their squares since this
sum is often used for estimating the long—memory parameter. We show that the limit is
not Gaussian but can be expressed using the non—Gaussian Rosenblatt process defined as a
Wiener-It6 integral of order 2. This happens even if the original process is defined through
a Hermite polynomial of order higher than 2.

1. INTRODUCTION

Wavelet analysis is a popular method for estimating the memory parameter of stochastic
processes with long-range dependance. The idea of using wavelets to estimate the memory
parameter d goes back to [27] and [8, 9, 10, 11]. See also |1, [2]. Wavelet methods are an
alternative to the Fourier methods developed by Fox and Taqqu (]12]) and Robinson ([19, 120].
For a general comparison of Fourier and wavelet approach, see [7]. The case of the Gaussian
processes, especially the fractional Brownian motion has been widely studied. In this paper
we will make an analysis of the wavelet coefficients of stationary processes with long memory
which are not Gaussian. The need for non-Gaussian self-similar processes in practice (for
example in hydrology) is mentioned in [24] based on the study of stochastic modeling for river-
flow time series in [13]. The wavelet analysis of non-Gaussian stochastic processes has been
much less treated in the literature. See [3] for some empirical studies. Bardet and Tudor, in
[4], considered the case of the Rosenblatt process which is a non-Gaussian self-similar process
with stationary increments living in the second Wiener chaos, that is, it can be expressed
as a double iterated integral with respect to the Wiener process. It can be also defined as
a Hermite process of order 2, while the fractional Brownian motion is a Hermite process of
order 1. We refer to Section [ for the definition of the Rosenblatt process (see also [25], [26]),
and to [5], [18], [25] for the definition and various properties of the Hermite process.

In the present work, we consider processes expressed as a Hermite polynomial of order
greater than 1 of a Gaussian time series. This will allow us to gain insight into more compli-
cated situations. We will derive the limit theorems that are needed to justify wavelet—based
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estimation procedures of the memory parameter. We will investigate the estimation problem
in another paper. In this work, we use :

a) a wide class of wavelets as in (2.6]), instead of “variations”;
b) an input process with long-range dependence, as in (2.2)), instead of self-similar processes;
c) a semiparametric setup, as in (I.2)), instead of a parametric one.

Denote by X = {X;}ez a centered stationary Gaussian process with unit variance and
spectral density f(\), A € (—m, ). Such a stochastic process is said to have short memory or
short-range dependence if f(\) is positive and bounded around A = 0 and long memory or
long-range dependence if f(\) — oo as A — 0. We will suppose that {X; };cz has long—memory
with memory parameter 0 < d < 1/2, that is,

FOO ~ A28 (N) as A — 0 (1.1)

where f*(\) is a bounded spectral density which is continuous and positive at the origin. It
is convenient to set

FO) =[1—e (), e (—m,m]. (1.2)
Since the spectral density of a stationary process is integrable, we require d < %

We shall also consider a process {Y; };cz, not necessarily stationary but its difference AKY
of order K > 0 is stationary. Moreover, instead of supposing that AXY is Gaussian, we will
assume that

(ARY), = Hgy(Xy), tE€Z, (1.3)
where (AY); = Y; — Y1, where X is Gaussian with spectral density f satisfying (L.2) and
where Hy, is the go—th Hermite polynomial.

We will focus on the wavelet coefficients of Y = {Y; };ez. Since {Y;}iez is random so will
be its wavelet coefficients which we denote by {W;, j > 0, k € Z}, where j indicates the
scale and k the location. These wavelet coefficients are defined by

Wik = hj(yk — )Yz, (1.4)
teZ
where ; 1 00 as j 1 o0 is a sequence of non-negative scale factors applied at scale j, for
example v; = 2J and hj is a filter whose properties will be listed below. We follow the
engineering convention where large values of j correspond to large scales. Our goal is to find
the distribution of the empirical quadratic mean of these wavelet coefficients at large scales
j — o0, that is, the asymptotic behavior of the scalogram
1 n—1
Sn,j = - Z Wf,k ) (15)
k=0
adequately normalized as the number of wavelet coefficients n and j = j(n) — oco. This is
a necessary and important step in developing methods for estimating the underlying long
memory parameter d, see the references mentioned at the beginning of this section.

When ¢p = 1, the behavior of S, ; has been studied in [22]. In this case, under certain
conditions, the limit as j,m — oo of the suitably renormalized sequence S, ; is Gaussian. If
go > 2 only few facts are known on the behavior of the scalogram S, ;. In [4], the authors
have made a wavelet analysis of the Rosenblatt process (see Definition 3.1l with ¢ = 2).
This situation roughly corresponds to the case gy = 2 (the second Hermite polynomial). It
has been shown that its associated scalogram has a non-Gaussian behavior, that is, after
normalization it converges to a Rosenblatt random variable. Basically, what happens is the
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following: the random variable Ha(X}) is, for every t € Z an element of the second Wiener
chaos and its square can be decomposed, using the properties of multiple stochastic integrals,
as a sum of a multiple integral in the fourth Wiener chaos and a multiple integral in the second
Wiener chaos. It turns out that the leading term is the one in the second Wiener chaos which
converges to a Rosenblatt random variable (a Rosenblatt process at time 1). Wavelet analysis
for G = H, with ¢ > 2 has not been done until now. Some intuition can be gained from the
study of quadratic variations of the increments of the Hermite process, in [5]. In this case
the starting process is self—similar, that is, invariant under scaling. Again the limit turns out
to be the Rosenblatt random variable. Briefly since the Hermite process is an element of the
gth Wiener chaos, its square (minus the expectation of its square) can be expressed as a sum
of multiple integrals of orders 2,4,.. until 2¢. It turns out that the main term is the one in
the second Wiener chaos which converges to a Rosenblatt random variable. This may suggest
that in our situation one would have perhaps a “reduction theorem” as in 23], stating that
it is the lower order term which dominates. This is not the case however. We will show in a
subsequent paper that higher—order Hermite processes can appear in the limit even when the
initial data are a mixture of a Gaussian and non—Gaussian components.

The paper is structured as follows. In Section Bl we introduce the wavelet filters and
state the assumptions imposed on them. In Section Bl we state our main result and we
introduce the Rosenblatt process which appears as limit for gy > 2. This result is stated
for a multivariate scalogram considered at a single scale. In Section [ we explain how this
applies to the asymptotic behavior of the univariate scalogram at multiple scales (in short,
the multiscale asymptotics). Results on the estimation of the long memory parameter are
derived in Section Bl In Section [6] we give the chaos expansion of the scalogram. Section [7]
and [§] describe the asymptotic behavior of the main terms appearing in the decomposition of
the scalogram. The proof of the main results is in Section @l Finally, Sections [I0] contains
technical lemmas used throughout our paper and Appendix [Al recalls the basic facts needed
in this paper about Wiener chaos.

2. THE WAVELET COEFFICIENTS

The Gaussian sequence X = {X;}1ez with spectral density (2] is long-range dependent
because d > 0 and hence its spectrum explodes at A = 0. Whether {H,(X;)}ez is also
long-range dependent depends on the respective values of gy and d. We show in [6], that the
spectral density of {Hg,(X¢)}ez behaves proportionally to |A|~0+(20) as X\ — 0, where

d+(q) = max(d(¢),0) and 6(q) =qd— (¢ —1)/2, q=1,2,3,..., (2.1)

and hence 04 (qp) is the memory parameter of {H, (X¢)}tcz . Therefore, since 0 < d < 1/2,
in order for {Hg,(X¢)}tez, go > 1, to be long-range dependent, one needs

qo) >0 (1—-1/q0)/2<d<1/2, (2.2)
that is, d must be sufficiently close to 1/2. Specifically, for long-range dependence,
Gp=1=d>0, qg=2=d>1/4, q=3=d>1/3, q=4=d>3/8 ...
From another perspective, for all gg > 1

5(q0) > 0 g < 1/(1 — 2d) (2.3)
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and thus {Hg, (X¢)}tez is short-range dependent if ¢o > 1/(1 — 2d). In the following, we
always assume that {H,,(X¢)}iez has long memory, that is,

1 <qp <1/(1—2d) or, equivalently, 0 < d(qp) < 1/2. (2.4)

As indicated in the introduction, we consider the process {Y;};cz, where AKY; = Hg (Xt)
for any t € Z and for some K > 0 (see (L3])). We are interested in the wavelets coefficients
of the process {Hy,(X¢)}1ez. To obtain them, one applies a linear filter h;(7), T € Z, at each
scale j > 0. We shall characterize below the filters h;(7) by their discrete Fourier transform :

. . 1 (7~ .
W) = Y k(e N A e o] () = 5 / LA T ez, (25)

TEZL

The resulting wavelet coefficients W; 5, where j is the scale and k the location are defined as

Wik =Y _hi(yk—t)Ys =Y hj(yik —t) A" Hyy(Xy), j > 0,k € Z, (2.6)
teEZL teZ

where y; 1 00 as j T 00 is a sequence of non-negative scale factors applied at scale j, for
example v; = 2/. We do not assume that the wavelet coefficients are orthogonal nor that
they are generated by a multiresolution analysis, but only that the filters h; concentrate
around the zero frequency as j — oo with some uniformity, see Assumptions (W-h)—(W-q)
below.

To study the joint convergence at several scales jointly going to infinity, wavelet coefficients
can be considered as a process W, r indexed by mg, k and where we let j — oo as in [6].
Here we are interested in the scalogram defined as the empirical square mean (L) with
n equal to the number of wavelets coefficients at scale j available from N observations of
the original process Yi,...,Yy. Considering the joint asymptotic behavior at various scales
means that we have to deal with different down-sampling rates ; and different numbers n;
of available wavelet coefficients, both indexed by the scale j. It is shown in [22] that the
joint behavior of the scalogram at multiple scales can be deduced from the joint behavior of
the statistic (IH), viewed as a vector whose components have the same j and n but different
filters hy j, £ = 1,...,m. We shall adopt the multivariate scalogram setup in our asymptotic
analysis. We shall apply it in Section ] to deduce the multiscale asymptotic behavior of
the univariate scalogram. This will also allow us to contrast the cases qg > 1 treated in
this contribution with the case ¢o = 1 which follows from the result obtained in [21]. Our
assumption on the filters hy;, £ = 1,...,m are the same as in [22, Theorem 1], except that
we allow 7; # 27 for the sake of generality, and we assume locally uniform convergence in
the asymptotic behavior in (ZI0). These assumptions are satisfied in the standard wavelet
analysis described in [15] and briefly referred to in Section [l

From now on, the wavelet coefficient W j, defined in (Z.6)) will be supposed to be R™-valued

with h; representing a m-dimensional vector with entries hy j, £ =1,...,m. We will use bold
faced symbols W ;. and h; to emphasize the multivariate setting, thus
Wik =Y hj(yk—t)¥; => hj(yik —t)A™ Hy,(Xy), j > 0,k € L. (2.7)
teZ tez

We shall make the following assumptions on the filters h;:

(W-a) Finite support: For each ¢ and j, {h¢ ;j(7)}rez has finite support.
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(W-b) Uniform smoothness: There exists M >0, & > 1/2 and C' > 0 such that for all 7 > 0
and \ € [—m, 7,

C’Y;ﬂhj)“M
(L+ Ao+

where |z| denotes the Euclidean norm of vector x. By 2m-periodicity of ﬁj this in-
equality can be extended to A € R as

lh;(\)] < (2.8)

1/2
‘ﬁ()\)’ <C '7]'/ |7j{/\}|M .
= Ca e
where {\} denotes the element of (—m, 7| such that A — {\} € 27Z.
(W-c) Asymptotic behavior: There exist a sequence of phase functions ®; : R — (—m, 7| and

(2.9)

some function IAloo : R — CP such that

lim Py (e = hao (V) (2.10)

Jj—+oo
locally uniformly on A € R.
In (W-@), locally uniformly means that for all r > 0,
‘§1|1<p 7;1/2f1j(7]-_1)\)e@jm —heo(N)| = 0.

This is satisfied if the set of filters correspond to a discrete wavelet transform (see Proposition 3
n [15]). Assumptions (28] and ([2I0) imply that for any A € R,

~ |)\|M
h (VM) <C—r—"="———.
‘ ( )’ — (1 |)\|)o¢+M

Hence vector hs has entries in L(R). We let hy be the vector of L2(R) inverse Fourier
transforms of hy o, £ =1,...,m, that is

hoo(€) = /R ho(t)e ¥ dt, ¢eR. (2.12)

(2.11)

Observe that while ﬂj is 2m—periodic, the function IAloo has non—periodic entries on R.
For the connection between these assumptions on h; and corresponding assumptions on the
scaling function ¢ and the mother wavelet 1 in the classical wavelet setting see |15] and [22].
In particular, in the univariate setting m = 1, one has hoo = @(0)1,;

For M > K, a more convenient way to express W ; is to incorporate the linear filter AK

in (2.7) into the filter h; and denote the resulting filter th). Then

W= hg.K)(fyjk —1)Hyo (Xy) (2.13)
teZ
where . . R
hO0) = (1™ Fhy() (2.14)

is the component wise discrete Fourier transform of hg-K). Since {Hgy, (X¢),t € Z} is stationary,

so is {Wj x, k € Z} for each scale j. Using ([2.9), we further get,

AR
(1 4y [{A ot

‘Ey{)(A)( < Cy)/2HE AER,j>1. (2.15)
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In particular, if M > K, using that (|7 {\}/(1 + 7 [{H)M < (1 0H/(1+ % {AH))K, we
get

BION)| < 02 1)K, AeR 21 (2.16)

By Assumption (2.8), h; has vanishing moments up to order M — 1, that is, for any integer
0<k<M-1,
> hit)t=o0. (2.17)
teZ
Observe that AXY is centered by definition. However, by (2.I7), the definition of W ;, only
depends on AMY. In particular, provided that M > K + 1, its value is not modified if a
constant is added to AXY, whenever M > K + 1.

3. MAIN RESULT

Recall that
(ARY), = Hy(Xy), t€Z.
The condition (2.4)) ensures such that {H,,(X¢)}icz is long-range dependent (see [6], Lemma
4.1). Our main result deals with the asymptotic behavior of the scalogram Sy, ;, defined in
the univariate case m = 1 by (LH]) as j,n — oo, that is, as n — oo (large sample behavior)
with j = j(n) being an arbitrary diverging sequence (large scale behavior). More precisely,
we will study the asymptotic behavior of the sequence

_ 1 n—1 1 n—1
Snj=—> (Wix—EIWL) = |~ > (Wen— EWE;) SN CRY
k=0 k=0 1=1,...m
adequately normalized as j,n — oo, where Wy ;i, £ = 1,...,m, denote the m entries of

vector W ;.. The limit will be expressed in terms of the Rosenblatt process which is defined
as follows.

Definition 3.1. The Rosenblatt process of index d with

1/4<d<1/2, (3.2)
is the continuous time process
" ei(u1+u2)t -1 d d i P
Z4(t) = ————|u1| " ug| T AW (u1)dW (ug), t € R. 3.3
0= [ | Sl AT () () (33

The multiple integral (3.3 with respect to the complex-valued Gaussian random measure
W is defined in Appendix [Al The symbol f[é/z indicates that one does not integrate on the

diagonal u; = ug. The integral is well-defined when (B.2)) holds because then it has finite L?
norm. This process is self-similar with self-similarity parameter

H=2d¢e (1/2,1),

that is for all @ > 0, {Z4(at)}er and {a’ Z(t) }ser have the same finite dimensional distri-
butions, see [25].

We now list the assumptions behind our main result:

Assumptions A {W,;, j > 1,k € Z} are the wavelet coefficients defined by (27) , where
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(i) X is a stationary Gaussian process with spectral density f satisfying ([.2]) with 0 < d <
1/2;

(ii) Hg, is the go th Hermite polynomial where gq satisfies condition (2.4));

(iii) the sequence of positive integers (y;);>1 is non-decreasing and diverging;

(iv) the wavelet filters h; = [hy jle=1,..m, j > 1, satisfy (W-m)—(W-@).
The definition of Hermite polynomials is recalled in Appendix [Al The following theorem
gives the limit of (3, suitably normalized, as the number of wavelet coefficients and the
scale j = j(n) tend to infinity, in the cases ¢y = 1 and gy > 2.

Theorem 3.1. Suppose that Assumptions A hold with M > K + 6(qo), where 0(+) is defined
in (21). Define the centered multivariate scalogram S, j by (31) and let (n;) be any diverging
sequence of integers.

(a) Suppose qo = 1 and that (v;) is a sequence of even integers. Then, as j — 0o,

ny/ 2y RS, s N(O,T) (3.4)
where I' is the m X m matriz with entries
2
* 2 ™ R —
Typ = O / D I+ 2pr | 2EFD [y o ) (A 2pm)| X, 1< L0 <m
g T |pez
(3.5)
(b) Suppose qo > 2. Then as j — oo,
_od — = L
iy ORg Ey £4(0)™ Lgy—1 Za(1) - (3.6)

where Z4(1) is the Rosenblatt process in (3.3) evaluated at time t =1, f*(0) is the short-
range spectral density at zero frequency in (I1]) and where Lg,—1 is the deterministic

m-dimensional vector [qu_l(/}\lg,oo)]gzl’...7m with finite entries defined by

lg(ur + -+ uwp)l* 77, -2
L = Il U; duy - - -du, , 3.7
P(g) /RP |u1+-~—|—up|2K i:1‘ ’ 1 D ( )

foranyg:R—C andp > 1.
This theorem is proved in Section [

Remark 3.1. Since 6(1) = d we observe that the exponent of ~y; in the rate of convergence
of Sn.j can be written as —2(5(qo) + K) for both cases g0 =1 and qo > 2, see (3.4) and (3.8),
respectively. This corresponds to the fact that dy = 0(qo)+ K is the long memory parameter of
Y, and, as a consequence, IE1|VVj70|2 ~ 07]2(5(q0)+K) as j — oo, see for example Theorem 5.1
in [6]. In contrast, the exponent of n is always larger in the case qy > 2, since this implies
2d —1 > —1/2 under Condition (2.4). The statistical behavior of the limits are also very
different in the two cases. In (3.4) the limit is Gaussian while in (3.6), the limit is Rosenblatt.
Another difference is that the entries of the limit vector in (3.0) have cross-correlations equal
to 1 (they only differ through a multiplicative constant). In contrast, this typically does not

happen in (37).
Eiemark 3.2. While Hy,(X;) involves a single multiple integral of order qo, szk and hence
Sy,j in [31) involves a sum of multiple integrals of order 0, 2, 4, 6... up to 2qy. But the
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limiting Rosenblatt process in Theorem [3.1l involves only a double integral, albeit with a non—
random factor Ly _1 expressed as a non-random multiple integral of order qo — 1. In view
of Theorem 5.1 of [G], the components of Lg,—1 are the asymptotic variances of the wavelet
coefficients applied to A=K H,_1(X;).

4. FROM MULTIVARIATE TO MULTISCALE ASYMPTOTICS

Theorem [3.1 applies to multivariate filters h; which define the scalogram S,, ;. We will use
it to obtain in Theorem [4.1] multiscale asymptotics for univariate filters and corresponding
scalograms. This passage between these two prospectives is explained in the proof of The-
orem [£I] We use dyadic scales here, as in the standard wavelet analysis described in [15],
where the wavelet coefficients are defined as

Wik =Y g;(Zk—1)Y;, (4.1)
teZ

which corresponds to (L4) with ; = 2/ and with (g;) denoting a sequence of filters that sat-
isfies (W-m)—(W-) with m = 1, and M and « respectively defined as the number of vanishing
moments of the wavelet and its Fourier decay exponent. In the case of a multiresolution
analysis, g; can be deduced from the associated mirror filters.

The number n; of wavelet coefficients available at scale j, is related both to the number
N of observations Y7, - -, Yxn of the time series Y and to the length T' of the support of the
wavelet 1. More precisely, one has

n;=[29(N-T+1)-T+1]=2"N+0(1), (4.2)

where [z] denotes the integer part of z for any real x. Details about the above facts can be
found in [15, [22].
In this context, the scalogram is an empirical measure of the distribution of “energy of the

signal” along scales, based on the N observations Y7, -+ ,Yy. It is defined as
1 n;—1
k=0

and is identical to Sy, ; defined in (L5). Note that the sequence (3]2-)]-20 is indexed by the
scale index j but also depends on the number N of observations through n;. The wavelet
spectrum is defined as

o3 =E[0;] =E[W?] forall k, (4.4)

where the last equality holds for M > K since in this case {Wj ;, k € Z} is weakly stationary.
We obtain the following result which provides asymptotics of the scalogram involving a finite
number of different scales at the same time. We only provide the result for gy > 2 since the
case gy = 1 can be directly deduced from [22, Theorem 2].

Theorem 4.1. Suppose that Assumptions A@)(@) hold with qo > 2. Set v; = 27 and let
{(9j)j>0, 9o} be a sequence of univariate filters satisfying (W+)-(W1a) with m = 1 and
M > 6(q0) + K. Then, as j — oo,

02~ go! (£*(0))%0 Ly (Joo) 22C@IE) (4.5)
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Let now j = j(N) be an increasing sequence such that j — oo and N277 — co. Define n;,
3]2- and 0’]2- as in (4-2), (4-3) and (4.4), respectively. Then, as N — oo,

52 - 3
g2 (T fidi {2(2d—1)u M%(l)} , (4.6)
J Ty Y50 40! Lgo(9) u>0

This theorem is proved in Section @l Note that the constants Lg,(gso) and Lgy—1(goo)

appearing in (4£5)) and (4.0) are defined by (B.7)). Here Adi neans the convergence of finite-
dimensional distributions, and since the limit depends on u only through a deterministic
multiplicative constant, we obtain, as in the multivariate case, that the multiscale limit has
cross-correlations equal to 1.

As in the multivariate case, conveniently normalized, the centered multiscale scalogram is
asymptotically a fully correlated Rosenblatt process. We recover the results of [4] where Y
is the Rosenblatt process itself. In other words Theorem 4 in [4] roughly corresponds here
to the case gy = 2. The results in [J] correspond to the single scale limit for any gg > 2,
which indicate a limit of the scalogram (which corresponds to a wavelet large scale analysis)
similar to that of the variogram (which corresponds to a small scale analysis using discrete
variations).

5. ESTIMATION OF THE LONG MEMORY PARAMETER

We now consider the estimation of the long memory parameter of the observed process
{Y:}tcz under the assumptions of Theorem [l that are supposed to hold all along this
section. As already mentioned, {Hyg,(X¢)}ez has long memory parameter 6(go). By (L3),
applying the setting of [15] for dealing with processes with stationary K-th increments, we
get that {Y;}4ez itself has long memory parameter

do = 5(QQ) + K. (5.1)
We want to estimate this parameter from a sample Y7,...,Yn. A typical wavelet estimator
of dp reads
p—1
do = Zwi log 8]2-+i , (5.2)
i=0

where wo, ..., w,—1 are weights such that wg + --- + wp—1 = 0, and Zf;oliwi = 1/(2log 2),
see |22]. Indeed, for this choice of weights and using (4£.5)) and (5.I]), we see that, as j — oo,

p—1 p—1 p—1
> wilogot; = > wilog (qol (/7 (0)) Ly (Goc) 22%) + do (Zm) 21og2 + o(1)
=0 =0 =0
= do +0(1) . (5.3)

Replacing 0’]2- . by 3]2 ; in the left-hand side of this approximation, we thus obtain an estimator
é}] of do. N

To obtain the asymptotic behavior of dy as j and N go to infinity, we first evaluate the
bias, which is related to the approximation error in the equivalence ([4.3]). To this end, we
must specify the convergence of f*(A) to f*(0) as A — 0. A standard assumption in the
semi-parametric setup is

5 = fFO) <O N A€ (=m ),
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where 3 is some smoothness exponent in (0,2]. However here f is the spectral density of the
original Gaussian process {X;}, hence we cannot apply directly the bound

‘0]2, _ C122dj‘ < Oy 9(2d—p)j 7

which corresponds to Relation (26) in Theorem 1 of |15] (with different notation for constants
Cy and Cy). In fact such a bound would contradict (LA since d # dy, see (2.1]) and (B.1]). We
must instead work with the (generalized) spectral density, say f, of the observed process {Y;}.

Applying Lemma 4.1 in [6], we have that the generalized spectral density f of the process
{Vi} = {AKH, (X))} satisfies

FOO) =aqo! 1= e 72K fon f(N)
——
qo times

where * denotes periodic convolution. Now, by Lemma 8.2 in [6], we get
qol 5 x f(A) = 1 — e 7@ ()

where f * denotes a nonnegative periodic function, continuous and positive at the origin, such
that

150 = FO) <CFO) A Ae (—m,m),
where 3 is any positive number such that B < 26(qo) and B < B. Hence, we finally obtain
FO) =1 —e 720 (N,
and we may now apply Theorem 1 of [15] and use (d3]), to obtain that

o = @l O Ly (o) 29| < €220

This yields

~0 (2—5ﬂ'> , (5.4)

p—1

2
E w; log Oiyi— do
i=0

which is a more precise approximation than (5.3). Observe now that do given in (5.2) satisfies
the identity

i=0 J+i i=0

p—1 ~2 p—1
~ 05,
do = do —I—Zwilog{1+ (0’; — 1) } —|—Zwilogaj2»+i —dp .
Expanding log(x) in the neighborhood of x = 1 and using (4.0) and (5.4]), we obtain the

following result.

Theorem 5.1. Suppose that the assumptions of Theorem[{.1] hold. As N — oo, if j = j(N)
18 such that j — oo and N277 — oo, then

do = do +n2*10p(1) + O (2—@') .

Moreover the Op-term converges in distribution to the Rosenblatt variable

p—1 ~
<Z wi2<1—2d>i) Lavrlio) 7,7y (5.5)
1=0

40! Lo (o)
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To optimize the asymptotic term (5.5]), one should choose weights wy,...,w,—; which
minimize the constant in parentheses. It is interesting to note that this constant vanishes
for some well-chosen weights, but that such a choice depends on the (unknown) parameter d.
Observe also that the constant approaches 0 as d approaches 1/2, since >, w; = 0.

6. CHAOS EXPANSION OF THE SCALOGRAM

Here we take m = 1 without loss of generality, since the case m > 2 can be deduced
by applying the case m = 1 to each entry. The purpose of this section is to consider the

scalogram S, ; defined in (LE). and express it as a sum of multiple integrals I(-) (defined

in Appendix A) with respect to the Gaussian random measure W. Our main tool will be
the product formula for multiple Wiener-It6 integrals. In view of (A), W; is a multiple
integral of order gy of some kernel f;, that is

Wik = Ioo(fin)- (6.1)

Now, using the product formula for multiple stochastic integrals (A.9]), one gets, as shown in
Proposition that, for any (n,j) € N2,

n—1 qo—1 2
1 q
S0y~ ElSng) = 3 > Wi~ EW] = > ot ps?) (6.2
k=0 p=0

where, for all 0 < p < gy — 1,
Sﬁfg)' = Iago—2p(9p) -
)

That is, for every j,n, the random variable Sffj ; is an element of the chaos of order 2¢gy — 2p.
The function g,(€), € = (&1, ..., &ago—2p) € R2072P is defined for every p € {0,--- ,qo — 1} as

n

|
-

9p(§) = (fix®pfik) (6.3)

0

where the contraction ®,, is defined in (A.I0).
Let us formalize the above decomposition of S, ; and give a more explicit expression for
the function g, in (6.3).

3=
i

Proposition 6.1. For all non-—negative integer j, {W; i }rez is a weakly stationary sequence.
Moreover, for any (n,j) € N2,

qo—1 2
S0~ BSns) = 3 01(?) nrsl) (6.4)

p=0 p
where, for all 0 <p < gqy—1,
ST(LZ,)])' = qu—2p(9p) ) (6.5)
and where, for all € = (£1,. .., E24,—2p) € R?2072P,

gp(&) = Dn(lyj (51 +- £2q0—2p))
2q0—2p

X H [V (&)L —rm ()] X k\gp) (C14 -+ E&po—prEgo—p+1+ -+ Eagp—2p) - (6.6)
i=1
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Here f denotes the spectral density (1.2) of the underlying Gaussian process X and

n—1

1 ) 1— einu
Dn - _ iku — . .
0= S = Sy (6.7)

denotes the normalized Dirichlet kernel. Finally, for € = (&1,&) € R?, if p £ 0,

70 (€1,60) = /( <Hf ) Dt A At ORI A o A, — ) A (6.8)

and, if p =0,
W (g, 6) = 2 (€)h (&). (6.9)

Notation. In (6.8]), dPX refers to p-dimensional Lebesgue measure integration. To simplify
the notation, we shall denote by 3, the C? — C function defined, for all ¢ € Z, and

y=(y1,--.,yq) € CI, by
q
=> i, (6.10)
=1

and for any (q1,¢2) € Z2, we denote by %, 4, the C? x C% — C? function defined for all
y= (y17 e 7yq1—|—q2) € (qu X (qu by

q2

Zaraa Zy S wil (6.11)

=1 i=q+l
With these notations, (6.9]), (IBEI) and (6.9]) become respectively
S = Tngo-2p (D 0 Lago-2p(1j % ) % [V Lz PO 72P) x A(’ozqo_p,qo_p) . (6.12)
i e - {f o P70 >ﬁ<K><zp<A>+sl>ﬁf’<zpu>—52> P ipAo o
DRI (GRY ifp=10.

where o denotes the composition of functions, A = (A,---,\,) and fEP(A) = fF(A1) -+ f(\p)
is written as a tensor product.

Remark 6.1. The kernel Egp ) can also be expressed in terms of the the covariance sequence
of the process X, namely,

RP(€1,8) = 2P S0 WO ) (my) B(Xpny X, )? e m&Hmat) (6.14)
meZ?
This follows from the relation

E(Xomy Xomy) = — / e!m2=mA f(\)d\

2T J_,
and (2.17) and the definition (2.0) of the discrete Fourier transform ﬁj.
Proof of Proposition By (L3,

Snj = EZWJ%’“ (6.15)
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Using (6.1I]) and the product formula for multiple stochastic integrals (A.9)) of Proposition [A.T],

we have
)

Wi = oo (Fi) g (Fi) = Y _(2m)7 p‘(p) ngo—2p (fjx@pfik) - (6.16)
p=0
Therefore,
2
q o~
Z Z )pp!< 0) Iogo—2p (9p) » (6.17)
p=0 p
where
n—1
Z f] k®pf] k-
k 0

By (A), for all £ = (&1, ,&4,) € R,
1(6) = exp oSy, (iky;€) (R o % a0 (¢)) /2 1900 6.18
Fi(€) = exp oSy (k€ (A0 0 x,(0)) (5% (©) 2 18% (6. (6.18)
If, p=1,2,...,q0 — 1, let £ = (&, ,&qo—2p). The contraction f;,®,f; defined on
R240=2P equals by (A.10),
Fir@pfix(€)

= / fj,k(éh T 7€q0—p7 S)fj,k(éqo—p-i-ly T 7€2q0—2p7 _S)dps
= exp oXgg,—2p(1k7;€) \/_]1( 7, ®2qo_2p(f)

xRS Gy DO G+ o = Zp(N) X TP V) d7A

= exp 0Xgg—2p(ikv;6) \/_]1(—7r7r @20 2p(5) ( Yo Ego-pao—p(8)

where /1( P) is defined by (€38)),[©9), or equivalently by (EI3),([69) and where we used that
E§-K)(-) = th)(—-). We therefore get that g, is a function with 2¢gg — 2p variables given by

n—1

1 ~
9p(§ ZGXP 0Xgy—2p(1k7;€) fl(—w ) B2 () x "fgp) © Xgo—p,q0—p(&) -
k 0

The Dirichlet kernel D,, appears when one computes the sum + ) 0 exp 0Xog,—2p (1k7;€).
This implies the formula (G.0]).
The chaos of order zero does not appears in (6.4]) where S, ; — E(S,, ;) is considered. It

appears however in the expression (6.I7) of S, ; in the term with p = go where ngo 9p = = Io.
In this case, we have

Tir = o2 2 2
(2m)®qollo(f5x@p fik) = M) aoll| £kl T2(ra0) = @0 fikll72(Re0) = E(Wjk[®)
corresponding in (6I7)) to the deterministic term

1 n
- S E(Wjkl?) = E(W;ol*) = E(Sn;) ,

by (€I5). Therefore S, ; —E(Sy ;) can be expressed as (6.4]). O



14 M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

As we can see from (€.4]), the random variable S, ; can be expanded into a sum of multiple
stochastic integrals starting from order zero (which corresponds to the deterministic term
E(Sn,;)). The order of the chaos appearing in the decomposition of S, ; could be greater or
smaller than the critical value 1/(1 — 2d). This means that S, ; may admit summands with
long-range dependence (orders smaller than 1/(1 — 2d) ) and short-range dependence (orders
greater than 1/(1 — 2d)). We will see that these two kind of terms have different behavior.
Another issue concerns p, the order of the contraction in the product formula for multiple
integrals. The case p = 0 must be discussed separately because the function & /f in (6.8) has
the special form (6.9)) if p = 0.

To study S, ; as j,n — oo, we need to study S (p ) which is given in (6.12]). We first estimate
the L? norm of Sﬁu)

7. AN UPPER BOUND FOR THE L? NORM OF THE TERMS S,(Lp]).

To identify the leading term of the sum S, ; — E(S) ;), we will give an upper bound for

the L? norms of the terms S,” % ) 0 < p < qp defined in (G5 and ([©.I2]). Then, in Section [{]
we investigate the asymptotlc behav1or of the leading term of S, ;. It directly implies the

required result about the asymptotlc bahavior of the scalogram. The expression (6.12) of

S, (p ) involves the kernel & /1 in (6.13)) which vanishes when & = 0 or £, = 0 if p = 0 because

ﬁ]( 0) = 0 by (2.8]). But the expression ([G.13)) of K /ij ) implies that it does not vanish if p > 0

because
7(0,0) = / (H f(AZ-)> (ﬁj(z:p(x))(zdpx >0.
(=mm)P \i=1

All these considerations lead one to distinguish the following two cases :
e The case p # 0.
e The case p = 0.

As for the Rosenblatt process considered by [4], the case p = 0 requires different bounds and
thus must be treated separately.

7.1. The case p # 0. Recall the expansion (6.4). In the case p # 0 we now give an upper
bound of [S)2 = E(ISP)2)1/? with 0 < p < go < 1/(1 — 2d).

n

Proposition 7.1. Let 0 < p < qo < 1/(1—2d). There exists some C > 0 whose value depends
only on p,d,qo and f* such that for alln,j > 2

(X

Py < Clogn)? n=min(=20(a0—p)1/2) o (0 H2AC (7.1)

where e =1 if 6(qo — p) = 1/4 and € = 0 otherwise.

Proof. Let C,C4,--- be positive constants that may change from line to line. Set r = ¢p—p >
1. We perform the change of variable y = n~;¢ in the integral expression of Sff j) given by (6.12])

and deduce that

_ ! /
(n)?" Jmer

E(p) o Er -

v\ |2
I d27‘
’ ’ <nw> ‘ ’

2
)
n7j

Dy, 0%, <%> ‘2 (ﬁ(f]l(—w,ﬂ))( yi,))

n
i=1 i
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We now use the expression of f given by (L.2), the boundedness of f*, the bound of Dirichlet

kernel given by Lemma [[0.3] and the bound of Rg»p ) given by Lemma [I0.Jl Hence one deduces
that there exists some C7 > 1 depending only on p, d such that

2 —2r(1— — r
E 57(5])_ < 017]- 2r(1 2d)/7;_1(5(p)+K)In7j _ Cﬂj 2+468(r)+45(p) 4KI s (7.2)
where )
n—2r(1—2d) gox, T(n% ) d2ry
L= / i 7
(—ngmnm? (141 {82 (n1y) ) I vl
with

1

(1 + 7 [{z )@ (L + ;{22 })°®)
We now bound the integral I, ;. To this end, perform the successive change of variables
N+ +yr _Yr Y1 Y2 _ Yor
U v v =

1= "y Up = —,U1 = y Ty Up .
n n n n

9(z1,22) =

so that
yi = n(u; — ujpq) for 1 <i <r—1, y, = nu,,
Yi = n(Vir — Vi—pp1) for r+1 <0 <2r — 1, yor = nu,

In addition, observe that for any m € Z, \ {0}, (y1,- - ,¥m) € (—nym,nym)™ , implies that
Y1+ -+ ym € (—m(ny;)m, m(ny;)m). Hence, there exists some constant C' depending only
on r,d such that

I < O/’Yﬂ”’ /'Yﬂ”’ erﬂr(ulﬂdl )Jr%w(vlﬂdl )duldvl
n,j
e =g (L + v )21+ {2200 (14 5 | {2}
where we used the definition of Jy, 4(s; /) in Lemma with the notation 1, for the r-
dimensional vector with all entries equal to 1, that is, we set m = r, a = 7, 1 = --- =

Bm = 2d in (I0.I4]). We now apply Lemma [I0.6l Since m =r < 1/(1—2d), we are in Case (i)
and we get that there exists some C' > 0 depending only on r,d such that

Ir e (852d1;) < Cls|™™) forall seR.

Then there exists some constant Cy > 1 depending only on r,d such that

v v —26(r 260(r)
In; <02/ ’ /] |20 |70y doy . (7.4)

(7.3)

1 (L o)) (143 {:—;}) e (147 {2} )zé(p)
Now use the inequality [{z}| < |z| valid on = € R. Since §(r) > 0,
I < Cy /’yﬂrr /’wrr \’Yj{“—l}\‘%("’!'Yj{”—l}’_%(r)duldvl O
WG (1 4 {ug + v }])? <1 +7% {ul}D <1+% 5 >2 ’

By 27m-periodicity of  + {x}, the integrand is (2vy;7)-periodic with respect to both variables
u1 and v; and we get that

Cg/ / |y oy (75)
I = (1 +n|{ur +v1}])2(1 + |ur])2®) (1 4 |vy |)200P) .
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To deal with the fractional parts, we now partition (—~,m,v;7)? using the following domains
Vi 5
Agfg) = {(u1,v1) € (—y;m,vm)?, [ur + vy — 27s| < 7},
with s € {—~;,...,7;}, so that I,, ; = A+ 2B with

A= / o e Y I O
A (L+nug +o1])?(1+ lup|)200) (1 + |vq])20(P)

and

B= i/ | |72 oy |72 duy duy
Al (L4 njuy 401 — 2ms])(1+ up])20) (1 4 [vy )2
Let us now bound separately A and B. To bound A, we distinguish two cases : 46(r) > 1

and 46(r) < 1. In the first case, observe that (1 4 |u|)?*® > 1 holds on R and perform the
change of variables u} = nu; and vj = nv;. Then

A < p—2H46(r) / [ | =200 ||~ 25) das, ), < Op~2H0) (7.6)
= g (LH[g +of)? |

since the integral is bounded. This follows from Lemma 8.4 of [6] applied with M; = 2,
M2:07q:27a:07 51:52:25(T)

In the case where 40(r) < 1, setting t; = uj + v1, we get that

A< /—7T dt; [/'yjﬂ ’tl _ Ul’—25(7") ’,Ul‘—25(r)dvl

. (L+nft))? r (L [t — v1[)29(P) (1 4 |vy])20(P)

We now split the integral in brackets into two terms

/ ‘tl _ vl‘—25(r)‘?}1’—25(r)dvl / ‘tl _ Ul‘—25(r)‘?}1’—25(r)dvl
rl<2ln | (14 [t = v1)2®) (14 o1 )PP foy <oy <nym (14 [t — 01 )P (1 + Joy ])200P)
Consider the first integral. Since 49(r) < 1, Lemmal[l0.6] (case (ii) or (iv)) applied with m = 2,
a =2|t1|,s1 = t1, B1 = B2 = 26(r) then implies that for some C' > 0 depending on r,d

—26(r —26(r
/ = 0|20 oy |20 do, < / [t1 — 1] 720 oy |72 duy
jon <2l | (14 [t — vi )20 (1 + fug])2P) o1 <2t

Now consider the second integral. Note that |v1| > 2|¢1| implies |vq —t1]| > |v1| — [t1] > |v1]/2.
We get that

/ ’tl _ Ul,—%(r)’,ul’—%(r)d,ul _ /'yﬂr ’vl‘—%(r)‘vl‘—%(r)dvl

oftr |<fon <y (L [t — 01 )20 (1 + [oy])20P) o] (14 [0r])P 0 (1 + Joy [)200)
Vi |v1|_4‘5(’")dv1

/ztl (1 + [or )@

= O((1+ [loglt1])7)

IN
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where we used that —4§(r) > —1 with equality if and only if ¢ = 1 and that 4(6(r) 4+ d(p)) =
46(qo) + 2 > 2. Hence, if 45(r) <1

T (141 € dt
e[ S st

To sum up Equations (7.6) and (7.7]), we can write
A < C (log n)® n~min@=4r),1) (7.8)

To bound B observe that, on R?, if |uj| < |u; + v1|/2 then
lo1] = |(u1 +v1) —wr| > Jur + 1| = Jur| > |ug +v1]/2 .
Hence either |uj| > |u; +v1|/2 or |vi| > |ug +v1\/2. Set
APY = {(ur,v1) € AV, Jug] > Juy + 0] /2}
and its symmetric set

AP = {(ur,v1) € AP, [v1] > fuy + 1] /2} .

Then, since §(r),d(p) > 0, for any s € {—v;,---,—=1,1,--- ,7;},
B — / Jug |72 |0y |72 duy duy
AeD (14 n {ur + vi)2(1 + [un )@ (1 + [oy])20)
_ / |2y | =20 H0P)) gy | =207 dagy dwy
= s T o + o )P+ [oa )P0
_ luy + u1|—2(5(’“)+5(P)>|v1|—25(7”>du1 duy
- AlsD

(L +n{ur +v1})2(L + [or )@
Setting 1 = n(u1 + v1), we get that
BOD < 1425074260 /27ms+7m ’tl‘—25(r)—25(10) dt, /’Yjﬂ ‘Ul‘—%(r)dvl ‘
o t1=2mns—mn (1 + |t1 - 27T’I’LS|)2 —y;T (1 + |U1|)26(p)

Set wy = t1 — 2mns. Since s # 0, we have

i —26(r
B(S 1) <Cn —1+26(r)+20(p ( (2|8| )) 26(r)—24(p) </ (1 + |w1|)—2dw1> (/PYJ |U1| ( )d'Ul > ’
R .

g (L4 Ju1])200)

and the same bound holds on B2 by symmetry. Hence

B— B gl 2 <on! Z 9 1)—20(r)—24(p) B fvl\_25(T)dvl 79
Z + n Z( |8| - ) . W . ( . )
JT(

[s|=1
Using 26(p) + 26(r) = d(qo) + 1 > 1, we deduce from (79) that B = O(n~!) and, with (Z.8),
I.j = A+ B = O((logn) n~™nC=400):0) - With (T2) and 6(p) + d(r) = 5(qo) + 1/2, we
obtain (7.1]). O
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7.2. The case p = 0. Here the situation is different from the previous case p # 0 since
the kernel k\gp ) involved in the definition of Sr(f ]) has a different expression when p = 0 and
vanishes when & = 0 or £, = 0. It implies that the bound in Proposition involves n~1/2
instead of n=119(%) a5 could be expected from the case p > 0 in Proposition [[-Il Further, an
additional assumption on the moments of the wavelet is required which is consistent with the
results proved in the Gaussian case in [15] (corresponding to ¢op = 1) where M is assumed to

be greater than K + d.

Proposition 7.2. Assume that M > §(qo) + K. Then there exists some C > 1 whose values
depend only on qo,d such that for any n, j

0 0 — 20 2K
150220y = E(SO)P)H2 < € 112420 @02 (7.10)

Proof. We denote by C' a positive constant that may change at each appearance, but whose
value does neither depend on n nor j. Since p = 0, ’/%§-0) = h§K)®2 by (€9). Then, setting
y = (7)€ in GI2), we get

0]
K|S, (7.11)
_ 1 / D. oYX (g) 2 (f1 )®(2qo)(i) pEE2 5 (i) 2d2qo
- (n77)2% Jg2q0 n© =2q\ - (=m,m) 7y j q0,q0\ v Y-
We now use the bound of the Dirichlet kernel given by Lemma [I0.3] the definition of f given
(K)

by Equation (C2]) with the boundedness of f*, the bound of /i{j given by Equation (2I5).
Then we deduce that

EHSY(LO,])P] < C’Yj_2q0(1_2d)’}/j2'(2K+l)[n,j — C,.Y;l(é(QO)'f‘K)InJ , (7.12)
where §(+) is defined by (2.1 and where for any j,n

2q0
In,j = n_2q0(1_2d) / go Eqw}o(g) H |yi|_2d dyp -+ dy2q0 ’
(=nyjm nyjm)290 LR e
with, for all (&1,&) € R2,

Lo l& P |y {ga sy P )

(1 + I €0/ DA + e/ D+
We now bound the integral I,, j. Observe that for any y = (y1,- -+, y2g,) € (—n, nij)zqo

(7.13)

9(&1,&2) = (L + [n{& + &2})

i+ + gl Snyjleo —i+ D and  ygoi + o + Yago| < nyjlgo — i+ D)7

Thereafter, we set

Y1t Yy _ Ygo _ Ygo+1 T+ Y2qq _ Y2q0
ul_—y"'y qo__yvl_ 7”'71)(]0_—‘
n n n n
Then
qo7Y; ™ qo7y; T
I,; < CO/ / g(u1,v1) Jqon/jw(uﬁ2d1qo)Jqo,'Yj7r(U1§2d1qo)du1dvl,
uU1=—qoY;T Jv1=—qoY; T

where we used the definition of Jy, 4(s; 8) in Lemma [I0.6] with the notation 1,4, for the go-
dimensional vector with all entries equal to 1, that is, we set m = qo, a = yj7, 1 = -+ =
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Bm = 2d in ([I0.14). We now apply Lemma Since gy < 1/(1 — 2d), we are in Case (i) of
and we obtain
Jaoryn(2:2d14)) < C |72 | 2 eR,
for some constant C' > 0. This bound with the inequality [{u}| < |u| and the expression of g
given by (7.13]) yields
/qowr /qow [y /PO |y fn /P00 duy doy
n,j = :
aom (1 nf{n -+ o2 11+ s {un /953D (1 + o P

By 2mperiodicity of u — {u}, we observe that the integrand is (27y;)-periodic with respect
to both variables u; and v;. Thus the integral on (—govy;, qO"}/jﬂ')z equals qg times the integral

n (—vy;m,v;m)% We get that

i /%w \ull (M—K—-6(qo0)) vy ‘2(M—K—5(qo)) duyduy
UI=—Y;T vl——'yﬂr 1 + Tl‘{?ﬂ + ’Ul}’) (1 + ‘Ul’)2(M+a) (1 + ‘U1’)2(M+a)
By assumption 2(M — K — §(qo)) > 0, then for any t € R,

|t HM=E=00)) < (1 |¢))2 M=K =0@0)) < (1 4 J¢[)2M-E)

qo07Y; ™

I; <C

It implies that

I,;<C

wn /’YJ7r duidvy
or=—m (L nl{ur +v1})2 (1 + fun|)2EFO (L + oy [)2(K+) -

We now apply Lemma [[0.7] with
522(K+a), B1=p02=0.
By assumption S > 1. Then I,, j; < C'n~! and the conclusion follows from (T.12). O

Ul=—757T

8. THE LEADING TERM OF THE SCALOGRAM AND ITS ASYMPTOTIC BEHAVIOR

Suppose qop > 2. We will show that the leading term of ), ; is S, (qo U defined in ©35). It is
an element of the chaos of order 2gp —2(go — 1) = 2 and after renormalization it will converge
to a Rosenblatt random variable. We first study the asymptotic behavior of S, ; — ST(:{;)-_D
which is a sum of random variables in chaoses 4,6 up to 2gy. We actually show in the next

(qo 1)

result that, under the normalization of S , this term is negligible.

Corollary 8.1. Assume qy > 2 and M > 5(qo) + K. Then, as j,n — 0o,

qo—2
—2d_—2(§ K do
nl 2d7j (6(g0)+K) Z p!< > ||S(p la| =0, (8.1)
— p
p=0
Proof. The limit (81)) is a direct consequence of Propositions [[.1] and [[.2] observing that
1-2d=1-26(1) <1—20(q0 —p) for all p=1,2,...,q0 — 2 and that §(go) > 0 and gy > 2
imply 1 —2d < 1/2. O
We consider the limit in distribution of the corresponding term n1_2d7j_2(5(q0)+K)SS§_l).
With Corollary 8] this will provide the proof of Theorem [B.I] in the case gg > 2. However,

to cover the m-dimensional case with m > 2, we need to define a multivariate S (p ]) that will

be denoted by ng? z Let 0 < p < qo- Define a C™—valued function n( ?) by applying (G.8)
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component-wise with h; replaced by hy;, £ = 1,...,m. Define a C™-valued function g,

by (66]) with k\gp ) replaced by Rg-p ), Finally define sz 3 as a m-dimensional random vector
defined by (6.5) with g, replaced by g,.

Proposition 8.1. Suppose that Assumption A holds with 2 < g9 < 1/(1 —2d) and M > K.
Then, for any diverging sequence (nj), as j — oo, we have

]1 2d,yj—2(6(QO)+K)S£Lqu’] N _£, FH(0)%0 Ly 1 Zg(1) . (8.2)

where Z4(1) and Lg,—1 are the same as in Theorem [31l.
Proof. Using (6.12]) component-wise with p = go — 1, observing that 2¢yp — 2p = 2 and making

the change of variable y = n+v;{ in the multiple stochastic integral, we get, using the self-
similarity of the Wiener process,

s~ <D 0 Tl x ) x [VFLm]®? x RO
i . -1 ®2 -1 ‘
£ n—% I <Dn 09 (n X ) X ]l(_'YjW,’YjTF) (n X ) « fg) ’ (8.3)

where, for all £ € R?,
£(n;€) = VI (€) x RV (¢) (8.4)

Here % means that the two vectors have same distributions for all n,7 > 1. We will use

Lemma [10.3] which involves fractional parts. Let us express 1?27 ryyr) @S & SUM of indicator
functions on the following pairwise disjoint domains,
V= {t = (t1,ts) € (—yym,yym)2, [t + 12— 2ms| < 7w}, SEZ. (8.5)
Hence we obtain
1y qd 1
SV T (8.6)
i SEZ
19 =1, (Dn 0% (n7Hx ) X Ty (071 x ) fj> . (8.7)

Proposition BTl follows from the following three convergence results, valid for all fixed m € Z.

(a) If s =0, then, as j — oo,

(njyy) =2y 200D+ L) (e o)y Ly, Z,(1) (8.8)
(b) We have, as j — oo,
suplE [(nﬂj)“*dvj HoloZHE) Iﬁ?,jﬂ —0. (8.9)
(¢) We have, as j,n — oo,
> E [(nﬂj)_4d7; Holo IO g ﬁf],]‘ } —0. (8.10)

SZV; 7
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To show that this is sufficient to prove the proposition, observe that, for any t = (¢1,t2) € Fg.s),

we have
2mls| —m < 2m|s| — |t1 +to — 27s| < |t +ta| < 247 .

Hence the domain ng) is empty if |s| > v; +1/2. We use ([89) for the two values s = ; and
s = —v; and (8I0) for the values s ¢ ;Z. Thus (89) and (8I0) imply

2
)—2d,yj—2(5(f10—1)+K) 3 ISE @
s#0
Observe also that the normalizing factor in the left-hand side of (82]) can be written as

7;2(5(QO—1)+K)> 7

(nv;

! SO = () (s
by using the definition of ¢ in ([2.I). The last two displays, (8.6]) and (8.8]) yield (8.2]).

It only remains to prove (8.8), (89) and (8I0).

a) We first show (88). Since I,gog» and Z4(1) are defined as stochastic integrals of order
2, ([8R) is equivalent to the L?(R?) convergence of the normalized corresponding kernels.
We show the latter by a dominated convergence argument. These kernels are given in (87])
and (E’Z;:{I) respectively. Observe that, as n — oo, D,(0/n) — (e — 1)/(i0) by (@1, for all
y € R%,

)—2d

exp(i(y1 +y2)) — 1
(i +w2))

Dy, (n_l(yl +y2)) —
By (), we have, as (nvy;) — oo, for all y € R?

VI Wl ) ~ F7(0) (09 Jya |l

(»)

Now applying Lemma [[0.2] to the m entries of & ;

for all y € R?,

with p = gqog — 1, we get that, as n, 7 — oo,

7§Q0—1)(1—2d)—(2K+1)quo_l)(y/(n’yj)) — (f*(o))qo_l Lgo-1 -

The last three convergences and 26(go—1) = 1—(go—1)(1—2d) yield the pointwise convergence
of the normalized kernels defining the stochastic integrals appearing in the left-hand side
of (8.8) towards the kernel of the right-hand side.

It remains to bound these kernels by an L?(R?) function not depending on j,n. We may
take m = 1 without loss of generality for this purpose, since component-wise bounds are

sufficient. If y/n € Fgo), we have, by Lemma [10.3]

1 Da((y1 +y2)/n)] < C (L4 [y1 +wal) 7" (8.11)
for some constant C' > 0. By (L), since f* is bounded, we have, for all y = (y1,y2) €
(—nyym, ny;m)

|0) 2w/ ()| < C ol el (8.12)
where C is a constant. Since gy — 1 < 1/(1 — 2d), Lemma [[0.1] implies that, for all ¢ € R?

and some constant C,

—2(6(go—1)+K) ~(go—1
"Yj (6(go—1)+ )K§qo )(C)‘ <C. (8.13)



22 M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

The bounds (8.11]), (8.12) and (8.13]) imply that (nyj)_dej_z(é(qO_lHK) 10— I>(g) with

n7-7
g2 < CA+ [y +v2)) 2 [ya ] Yyal 24 y = (y1,52) € R?,

for some positive constant C'. Since we assumed 2 < 1/(1 — 2d). Then, applying Lemma [T0.5]
with My = 2, ¢ = 2, and a = 0, we obtain that this function is integrable and the conver-
gence (8.8) follows.

b) Let us now prove (89]). Again we may take m = 1 without loss of generality since
the bound can be applied component-wise to derive the case m > 2. Observe that the

bounds ([8I2) and (BI3]) can be used for y/n € ng), while the bound (8I1]) becomes

1Du((y1 +2)/)|? < C (1+ [y1 + 2 — 27ns]) 2, (8.14)

Hence in this case, we obtain that (n’yj)_2d'y;2(6(q°_l)+K) [1(18; = I»(g) with
9W)I? < O+ [y +y2 — 2mns]) 7> [y 727 Jy2| 2%,y = (y1,10) € R?, (8.15)
for some positive constant C. Using the assumption 2 < 1/(1 —2d), from Lemma [[0.5 applied

with ¢ = 2, a = 27ns and M; = 2, we get (8.9]).
¢) Finally we prove (8.I0) with m = 1. We need to further partition I'; into

T\*7) = {t €T3, t/y; — 2mo € (~m,m)?}, o €Z?. (8.16)
Note that for all t = (¢1,t2) € F§8’U), we have, for any ¢ = 1, 2,
|27TO'Z'| < |ti/7j — 27TO'Z'| + |ti/’7j| < 27.

Hence ng’g) = () for all o out of the integer rectangle R = {—1,0,1}2. Then we obtain

(nyy) 2y 2OTITOLE = N Do)
ocER

where, for all y € R?,
S — —2(6 - K
95 (y) = (ny) 2 20O D 0 5 (y/n) % 1o (y/m)  fi(0) -
J
Since R is a finite set, to obtain the limit (8I0]), it is sufficient to show that, for any fixed

o€ R, as j,n — oo,

s¢y; L
For ¢ € 270 + (—m, )2, we use a sharper bound than (8I3)), namely, by Lemma [I0.1]

@l g2
)| 0. (8.17)

2
(7;2<5<q0—1>+K>z§q0—1>(g)( < CKPX(( —2m0) where kj(u) = (1+;lul) 2@ | (8.18)

With ([812) and ([8I4), it follows that

g(s) (y)r <C k‘?2(y/(n7j) — 2m0)
7 T (L 1+ 2 — 27|

Let us set w = (wy,w2) with wy = y1/(ny;) — 2mo1 and wy = y2/(ny;) — 2moy. Using the
bound (8I9) and that y/n € ng’g) implies w € A§-s’o) with

E | 72 Jy2 72y = (y1,92) €R?. (8.19)

AP = (w1, wz) € (=, m)2, |y (w1 + w2) — 27(s — vj(01 + 02))| <7},
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we get

/

Since |w; £ 27| > m > |w;| for w € A

/
(8.20)

We shall apply Lemma [10.5] after having conveniently bounded £; in the numerator of the
previous ratio. Let 8 < 1 to be set later arbitrarily close to 1. Since 26(go—1) > S—2d+2(qo),
we have

2 E22(w) |wy + 2m01| =2 wg + 2mon| 2
gc(rs)(y)‘ d2y < C(’I’L’}/j)2(1_2d)/ j

d?w ,
AP (1 + n|yj(wi + w2) — 27 (s — vj(o1 + 02))])?

gs,o), we have for ¢ € R,
EZ2 (w) Jwr| 2wz | =2

() (14 nlyj(wi + wa) — 2m(s — (o1 + 02))[)?

dPw .

2
)| Py < 02 [

Fj(u) = (14 )72
< (145 [u)*7P (1 4 yfu]) 200

Observe that, for all w € Ag-s’g) we have

vi(lwi| V |wa|) > v;|(w1 +w2) /2] > 7(|s — vj(01 + 02)| — 1/2) > 7|s — yj(01 + 02)[/2 .

In the last inequality, we used that s ¢ v;Z and that s, ;, o1 and o9 are integers so that
s =701+ 02)| > 1.

Using 0 < go < 1/(1 — 2d), we have 26(qp) > 0, and, choosing /3 close enough to 1, we have
B — 2d > 0. Hence, the last two displays yield, for all w € A§-S’U) with s & ~;7Z,

K22 (w) < |y PP lyjwa PP (1 + 7|s — 501 + 09)]/2) 72000 (8.21)
Inserting this bound in (820) and setting ¢ = nyjw, we obtain
2
/ )| ay

<o n—4d+28 / |t1t2|_6 L2
T s = (o1 +02)[290@) Jr2 (14 [t + 1o — 27n(s — vj(01 + 02))])?

For 8 close enough to 1, we may apply Lemma [I0.5] with ¢ = 2, d = /2, M; = 2 and
a = 2mn(s — v;(o1 + 02)) to bound the previous integral. Using again that s ¢ +,;Z and that
s, 74, o1 and o9 are integers, we have |a| > 27n and thus 1+ |a| < |a|. We get, for all s & ~,Z

/

where C' is some positive constant.
Now choose 3 close enough to 1 so that 26(qp) + 28 — 1 > 1. It follows that

Z ’k‘l—%(%)—?ﬁ < 00 .
k0

2
9 w)| Py < O |s = 550 + o) 172072,

Since our assumptions imply d > 1/4, the last two displays imply (8I7) and the proof is
finished. O



24 M. CLAUSEL, F. ROUEFF, M. S. TAQQU, AND C. TUDOR

9. PROOF OF THE MAIN RESULTS

Proof Theorem [3.1l. We first prove the result in Case@ In this case ¢o = 1 and thus Hy (X;) =
X:. Let (v(s))sez be the Fourier coefficients of /27 f, so that the convergence

2m fF(A) =5(A) = > _wv(s)e ™
SEL
holds in L?(—, 7). It follows that {X;};cz can be represented as
Xp=>» v(t—s), teZ,
SEL

where {&; }4c7 is ani.i.d. sequence of standard Gaussian r.v.’s. Applying [213]) with Hy, (X;) =
X; we obtain that

ARN
W=7 , (9.1)
Zm,j,k
where
Zojn =Y vo(vik — )&
teZ
with
ve,j(u _d KZhJ u—s)v(s), uez.
SEL
Hence
Tog () =4 TERED )0 = 77K Ve FN BN, A e (—mm)
Observe that (1), 2]) and (214) 1mply, for some positive constant C,

)\’M (K+d)
S o0 < o2
R ) e
On the other hand, (L), (IZIII) and (2.14) imply

Tim 7 V20,577 NN = O AT E DR (A), AER, £=1,...,m

j oo
Thus, if M > K +d, Assumption A implies Condition B in [21] with N =m, § = a+ K +d,
Mg = Ao = 0, iy = By, v, = (2) V265 and v (A) = (2) 2 /FO) Dk e (M)

A€ (—m,m).

fori=1,...,N and j > 1. Moreover we may apply Theorem 1 in [21] and obtain, as j — oo,
o1 [ 2~ B2 i
~1/2 .
2y : SN (OT)
h=0 Z]2V,j,k - E[ijv]k]
where T is the m xm covariance matrix defined by ([B.3]). Since, by ([B.1]) and (9.1)), nl/ 2 2(dJrK)Sn i

is the left-hand side of the last display, we get (B.4]).

We now consider Case [bl Applying the basic decomposition (6.2]) to each entries of gn,j,
Corollary B1l and Proposition BRI show that the leading term is obtained for p = ¢qg — 1.
Moreover the latter proposition specifies the limit. O
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Proof of Theorem [{.1 We first prove (@I). Applying (£4), (A7) (with h; replaced by g;)
and the isometry property (A.H]), we have

~ 2
0]2 _ (IO!/( |9j © 2q0(5)| f®qo(£) dog .

—remyo |1 — e a0 (92K

Setting £ = 277\, we get

. 2__7/2/9\,02 (2_])\)|2 '
7= '2_]([10_1)/ ‘ J 90 ®90(9=7 \) 90 \
g ! : : '
1 (—2im,2im)a0 |1 — e—12q0(2*M)|2K e )

Using Assumption (W-b) on g;, and Condition (L2)) with f* bounded, the integrand is
bounded, up to a multiplicative constant, by

22](K+dQO (1 + ’qu 2(a+K) H ’)\ ’ 2d

since (|z|/(1+|z|))™ < (|z|/(1+]z]))¥ and |1 —e~**| < |z|. The displayed bound is integrable
by Lemma [0.5 with M; = 2(a + K), ¢ = qo and a = 0. By dominated convergence,
Assumption (W-@) on (g;) and continuity of f* at zero, we get, as j — oo,

. Ego
9~ 2j(K+dgo—(00-1)/2) 52 _y o) (f*(0))® / |g°°O—q° ||~ —2d qao)
J R0 [Xgo(A)PF H

Using (2.0) and the definition L, (goo) in ([B.7)), we obtain ([.35)).

To prove the convergence of the scalogram, we shall apply Theorem B.Il(b) with a se-
quence of multivariate filters (h;);>o. To illustrate how this is done, suppose, for example,
that we want to study the joint behavior of W;_, ; for u € {0,1}. Recall that j — 1 is
a finer scale than j. Following the framework of |22], we consider the multivariate coeffi-
cients W, = (Wj 1, Wi_1 2, Wj—12k+1), since, in addition to the wavelet coefficients W)
at scale j, there are twice as many wavelet coefficients W;_1 o, Wj_1 k41 at scale j — 1.
These coefficients can be viewed as the output of a multidimensional filter h; defined as
hj(t) = (hj(7), hj—1(7), hj—1(T + 2771)). These three entries correspond to (u,v) equal to
(0,0), (1,0) and (1, 1), respectively, in the general case below.

In the general case, each h; is defined as follows. For all, j > 0, v € {0,...,j5} and
v € {0,...,2% — 1}, let £ = 2" + v and define a filter hy ; by

hei(t) = gj—u(t +207"0), te€Z. (9.2)
Applying this definition and (@I with v; = 27, we get
Wizt = > hej(2k — )Yy .
teZ
These coefficients are stored in a vector W, = [Wy ; r]¢, say of length m = 2P — 1,
Wik =Wj_uoukte, {=2+v=12...,m, (9.3)

which corresponds to the multivariate wavelet coefficient (Z7)) with h;(¢) having components

hej(t), € =1,2,...,m defined by ([@.2]). This way of proceeding allows us to express the vector
[JJ2 v 0]2 u]u —0,...p—1 as a linear function, up to a negligible remainder, of the vector §nj J
defined by (B1)). Indeed observe that (£2]) implies, for any fixed u

Nj—y = 2u7”Lj + 0(1) . (9.4)
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Hence (43]) and (4.4)) imply, for any fixed u,

ng—
~ 1
0-]2‘—u - 0]2'—u = N Z (sz—u,k - E[W]2—u,k])
I k=0
1 2%n;—1
= nj Z (sz—u,k - E[W]2—u,k]) + OP(O-jz'—u/nj—u)y ] Zu.
- k=0
Expanding Ziu:% 22 e 0 with £ = k2% + v and applying (@.3) and the last
display, we obtain, for all j 2 P,
qu_1n;—1
Gy = 5 Z Z (Wi sojr = EW3i i ja]) + Op (05 _u/nj-0)
I y=0 k=
2u_1
— Z Snj7j(2“—|—v)—I—Op(ajz_u/nj_u), u=0,....,p—1, (9.5)
I =0

where we denoted the entries of Sy, j in BI) as [Sy, ;(0)]e=1,...m
Let us now check that (h;) satisfies the assumptions of Theorem B.Il By hypothesis {g;}
verifies Assumptions (W-a)-(W-g). Hence, by (@.2)), {h;} satisfies (W-m). We further have
that, for £ = 2% 4+ v with u € {0,...,p — 1} and v € {0,...,2" — 1},
heg ) = Gimu(Ne? " N € (=mm) .
Hence (WD) follows from the assumption on g;. Using that v; = 27, Condition (W) also
follows with ®; = 0 and
oo (A) = 27925 (274N )2 A (9.6)
We can thus apply Theorem B] and obtain (B.6]), that is,

nl-29=2@a0)+)g, Ly £4(0)% Lygy_y Za(1) .

with Lg,—1 = [qu_l(/i;gm)]g:lw,m. By ([@.6)) and (37), it turns out that, for £ = 2% + v with
uwe{0,....,p—1} and v € {0,...,2" — 1},

1
N ‘2 u/2§oo(2 (tl + - o _od
Ly—1(hs o) = t; dty -« - dtg,—

_ 2—u—2Ku—2d(q0—1)u+u(q0—1)L

QO—l(QOO)

= 9~ 2ull@)+K)+u2d-Vp (G )

after the change of variables s; = 27%¢;, i = 1,...,qo — 1 and the definition of §(qo) in (Z.1I).
Using the last two displays, we obtain that, as j — oo,
{n;—2d2—2(j—u)(5(qo)+K)§nj7j(2u —l—v)} fidi, {2U(2d 1) Lago—1(Go0) £*(0)20 Zd(l)} ,
U,V u,v

where (u,v) take values u = 0,...,p —1 and v = 0,...,2% — 1. Note that the right hand
side does not depend on v. By ([#2), we have n;/nj_, ~ 2 “ and by (@35]), we have o ] ~

u
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0! (f*(0))%0 Ly (Goo) 22070(@0)+K)  Thus the last display yields

2u—_1 ~
1 fidi { —1) Lgo-1(9)
1-2d w(2d—1) Lqo
n! S, (2% +v)y 2B Lo Za-LJoel 7 1) Y
s 3y e wiLae)
where u =0,...,p — 1. Applying (@.5]), we have
~9
1-2d [ Zj—u Ry I ST 2
n; ( 2 —1) =n; P (O'j_u—O'j_u)
j—u j—u
=
:n1_2d2— ,] Z Snm’(z +v) + Op( ; 2d/”] w)
Tj—u Mj—u v=0

By (@), n}_zd [Ty ~ 2“nj_2d — 0 since u is constant. Hence (4.0)) follows from the last two
displays. O

10. TECHNICAL LEMMAS
~(p)

10.1. Asymptotic behavior of the kernel & i The following result provides a bound of

Rg-p ) defined in (6.8]), in the case where p > 0. It is used in the proof of Proposition [7.1]

Lemma 10.1. Suppose that Assumption A hold with m =1 and M > K, and let 0 < p <

1/(1 —2d). Then there exists some C1 > 0 such that for all (&1,&) € R? and j > 0,
2(3(p)+K)

k\(p) / .
K57 (1, &) < C (1_‘_%|{£1}|) )1+ y5[{&})° .

Proof. By (2m)-periodicity of & /1 ({1, &) along both variables & and &, we may take &1,&; €
[—7,]. Set for all i € {1,--- ,p}
pi = N+ ),

in the integral (6.13). Then by (L2]) and (2.16), there exists a constant C' independent of j
such that for all (&,&) € [—m, 7%,

- VP Jp oy (p11; 2d)d
R (€1, —6)| < O f |2 2520 / i
—yiom [ L=y (W45 /vy + &}

where J,, o is defined in Lemma [[0.6l Applying Lemma [I0.6 (8 = 2d,a = 7;7), there exists
some constant C' > 0 depending only on p,d such that for any p; € R*,

)K+a )

Tpyyr(p1,2d) < Clpg |7PE2D = €|y |72 (10.2)
Hence there exists C; > 0 such that, for all (&, &) € [—7, 7],
~ 5 py;T —25(P)d
| §'p)(f1, —&)| < Crv; jor )/ 2 ] A K+a
—pym [Ticy (L + 9 {pa /v + &)

Using the Cauchy—Schwartz inequality yields

2 DY | —26(p 1/2
7 | d,ul
7P (€1, ~&)| < C1y 2(K+5(p [] / (10.3)
’ i=1 —pY;T (1+ |'7j {#1/% + £Z}|) (K+a)
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We now use that

/mj || 2°P) dysy < ¥ / || W) dpuy
—gn (U (g + DR = 2 Ty (L T 58 = 2ms) 200

where I(s) denotes the interval —v;§ + 2mwsy; + [—7;7, ;7. Since we have here supposed
that 6(p) > 0, we may apply Lemma [I0.5] with d = 6(p), ¢ = 1, a = —v;({ — 27s) and
M; =2(K + «). We get

/’p’Yjﬂ' ‘Iul‘_25(p) dul
oy (U g {pa /s + €3 ])2EF)

<C Y (Ll -2ms)7

Is|<(p+1)/2

for some positive constant C. Since |£| < 7, we have, for any non-zero integer s, |£ — 27s| >
(2|s| = 1)m > m > |£|. Hence all the terms in the last sum are at most equal to the term
corresponding to s = 0. This, with (I0.3)), yields (T0.T]). O

Next we derive the limit of 7%§-p )
the proof of Proposition B.11

, rescaled and normalized, as j — oo. The result is used in

Lemma 10.2. Suppose that Assumption A hold with m =1 and M > K, and let 0 < p <
1/(1 —2d). Let (zjn)jn>1 be an array with values in R%. Let (n;) be a diverging sequence of
integers such that |z ;| — 0 as j — oo. Then, as j — oo,

(1-2d)~ (2K +1) ~(p)

’Y;] - K (2jn/75) = (f7(0))" Lp(hoo)
where Lp(iALoo) is the finite positive constant defined by (3.7).

Proof. From @II)and 7)) with M > K we get that [heo (A)|/|AX < (14|A])=* % The fact
that Ly(heo) < oo follows from Lemma applied with a = 0, p = ¢ and M; = 2(a + K).
Setting ¢ = ;A in ([GI3]), we get

GG = [ e (104
ViT5

where, for all j >0, A € R? and ¢ = (£1,&) € R?,

1P uxs€) = 2D 2 O) BV (2,0 + 60k (5,00 ~ &)
Using (L)), (ZI0), 2I4) and z;, — 0, we have, as j,n — oo,

p

e :
G - oy FES s Tl 0s)

It turns out, however, that f](K’p )(C :2jn/7;) cannot be uniformly bounded by an integrable
function over the whole integral domain (—v;m,~;m)P, but only on a specific subdomain, as
we will show below. By (L)) and (2.I6)), setting m,, = sup; |z; |, we have, for some constant
C >0,

1G] < € Hrcz\ 22 sup (L [y {(Bp(0) +u) /) HEHO L (10.6)

|u|<mp
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The domains are defined using an integer s by taking ¢ such that {(X,(¢)+u)/v;} = (3,({)+
u)/v;—2ms. In fact we will use smaller domains that do not depend on u € [—my,, m,|, namely,

Fﬁl = {¢ € (—ym,ym)P, =1+ 2ws + my/v; < Ep(Q)/7; < T+ 2ws —mp/y;} .

We note indeed that, for all { € FES)@ and u € [—my, my], {(Ep(0)+u)/v;} = (Ep(0) +u)/v; —
2ms. The following set completes the partition of (—v;m,~;m)P.

Ajn={C € (=ymym)P o d(X,(0)/vj, 7+ 27Z) < myp/7v;}

where d(z, A) denotes the distance between a real x and the set A. We will prove below the
following facts.

(i) The following bounds hold for ¢ € RP and n large enough,
K, *
Lo 559G 25/2) 4= (£ O Ly (10.7)
J,n

(i) If |s| > (p+1)/2, FgST)L is an empty set.
(iii) For all s # 0, as n,j — oo,

| 1 G zng) AC = 0. (10.8)
Jsm
(iv) Asn,j — oo,
/A FEP(C 25 /5) dC = 0. (10.9)
Jsn

To conclude the proof, we show (i), (ii), (iii) and (iv) successively.
First consider (i). It follows from (I0.6]), the definition of F?,n and m, — 0 that

p
]lrg,n(C) ‘f}Kvp)(C;Zj’n/’}/j)‘ <C H ’Cz"_w (1/2 + Ep(())_2(a+K) .
=1

Observe that, by Lemma [[0.4] and since a > 1/2, K > 0 and p(1 — 2d) < 1, the right-hand
side of the last display is integrable. Then (I0.7) follows from (I0.5) and the dominated

convergence theorem.
(s)

Jm
We now prove (iii) and thus take s # 0. Using (I0.6) and m,, — 0, we get, for all € nggl
and n large enough,

Assertion (ii) follows from the definition of T’

p
1P zin )| < € TTHGIT (1/2 4 12p(C) — 2msn )72+,
i=1

The limit (I0.8) then follows from Lemma applied with ¢ = p, My = 2(K + «) and
a = 2my;s.
Finally we prove Assertion (iv). In this case, we observe that (I0.6]) implies

p
£5P(G zin/i)l < CTT HGl

i=1
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This bound and Lemma [10.4] yields

N

Hence, we obtain (I0.9) and the proof is achieved. O

Py

£ ¢ 2y fy) AC < © / Lat/; m+2mz)<mn fy At = O(mn) .

—pv;T™

10.2. Other technical lemmas.
Lemma 10.3. Define the Dirichlet kernel D,, as in (0.7). Then

supsup (1 + [n{0/n}|) | Dn(0/n)| < oo . (10.10)
R n>1

Proof. We observe that |e* — 1| > 2|{\}| /7. Hence, for all # € R,

7 el — 1] 7 [eim0/m} |
1Dn(0/n)] < 5~ = 5
2[n{0/n}l 2 [n{0/n}|
Now, using that e — 1| < 2Ju|/(1 + |u|) on u € R, we get ([0.I0Q). O

Lemma 10.4. Let p be a positive integer and f: R — Ry. Then, for any 8 € RY,

q
/ Fln+-+yg) [Tl dyr---dyg =T x / Fs)ls[ 1P s (10.11)
Ra R

i=1

where, for alli e {1,--- ,q}, Bi=pi+---+ B4 and

q
r=J] </R |¢|7Bi|1 — t\ﬁ“dt> :
=2

)

(We note that I' may be infinite in which case (I0.11]) holds with the convention oo x 0 =0).
Proof. This follows from Lemma 8.3 in [6]. O

Lemma 10.5. Let d € (0,1/2) and q be a positive integer such that ¢ < 1/(1 — 2d). Let
My > 1. Set for any a € R,

q
Jg(a; My;d) = /R (14 124(¢) - al)~ M H 1G24 dc.
! i=1

Then one has

sug(l + |a))t=90=24) 7 (a; My; d) < oo . (10.12)
ac

In particular,
Jq(0; My;d) < oo,
and

Jy(a; My;d) = O(la|~079072d) 454 — oo .
Proof. This follows from Lemma 8.4 of in [6]. O
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Lemma 10.6. Define, for all a > 0 and p; € (0,1),

Jra(s1:B1) = |s1]77, s1€R, (10.13)
and, for any integer m > 2 and 8= (B1,--- ,Bm) € (0,1)™

Tnalsri9) = [

so=—(m—1)a o

(m—1)a a m
/ H |si—1 — si\_ﬁi* ]sm\_ﬁm ds,,...dss, s €R.
Sm==0 =2

(10.14)
Then

(i) if B+ -+ Bm >m — 1, one has

Ci(B) = sup sup (\sl]_(m_l_(51+"'+5m))Jmﬂ(sl;B)) < 0,
a>0 s1eR

(ii) if p1 + -+ + B = m — 1, one has

1
Cn(B) =sup sup (
( ) a>0 |s1|<ma 1+ log(ma/"sl’)

(1) if there exists g € {2,...,m} such that By + -+ B = m — q, one has
<a—(q—1—(61+---+ﬁq1))

Jm,a(3135)> < oo,

Cn(B) =sup sup

a>0 |s1|<ma

1+ log(ma/lsll) Jm,a(81;5)> < 00,

() if B1+ -+ Pm <m—1 and for all g € {1,...,m — 1}, we have Bg+ -+ B, # m —q,
one has

Cim(B) =sup sup (a_(m_l_(ﬁl+”'+5m))Jm,a(sﬁﬁ)) <o00.
a>0 |s1|<ma

Remark 10.1. We observe that Cases (ii),(iii) and (iv) can be put together as the following
formula, valid for all B € (0,1)™ such that 1+ -+ B <m —1,

Cn(B) T 513 8) (1015)
'm(B) =sup su m,al81; <00, :
220 [ 2oma \ {1+ log(ma/[si[)}e ™!

where ¢ = 1 if there exists ¢ € {1,...,m} such that g+ -+ + By = m —¢q, and ¢ = 0
otherwise. We may also include case (i) as follows,

Cm(B) =sup sup

a>0 |s1|<ma

—(m=1=(B1++8m))+ | g, |[(M=1=(B1++Bm)) -
(a 1 Ima(s1;8) | <oo,

{1+ log(ma/|s1])}®

(10.16)
where € is as above, and a4 = max(a,0) and a— = max(—a,0) denote the positive and negative
parts of a, respectively.

Proof. Observe first that for all m > 1,
(m—1)a
Im,a(s1; 8) = / |52 — 1] 77" Jm—1,a(s2;8') ds2 (10.17)
sa=—(m—1)a

where 8" = (B2, ..., Bm). The bounds C,, () in the different cases will follow by induction on
m.
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Let us first prove the result for m =1 and m =2. If m =1, f = 1 € (0,1) only satisfies

the condition of Case (i) and, since J;, is given by (I0.I3), the result holds for m = 1.
Assume now that m = 2 and s; # 0 and set s2 = v|s1|. Then

a/ls1] dv
Joa(s1;8) = s 1—“31“32)/ S — 10.18
27“( 1 ,8) ‘ 1’ —a/\sl\ |1—U|61|U|62 ( )
In the case 81 + B2 > 1, we are in Case (i). Since fR \I—U\C}*W is finite, the required upper

bound holds. If 8; + 2 < 1, we are either in Case (ii) or (iv) and the result follows from the
following bounds valid for some constant ¢ depending only on £, if 51 + 82 <1 and = > 1/2,

/w dv < cxplt=(B1+82)
—o [T =0l fol?2 ’

and, if 1 + 02 =1 and z > 1/2,

v dv
L/a = ool = C(1 + log(2x)) .

This prove the result for m = 2 because z = a/|s1| > 1/2.

Let us now assume that the result holds for some positive integer m — 1 and prove it for
m. We consider two different cases.

(1) If B satisfies the conditions of Case (i), Case (ii), or Case (iv) then ' satisfies the
conditions of Case (i) or (iv). Then by (I0.I7) and the induction assumption,

, (m—1)a ,
Jma(s1;8) < Crn_1(B)alm=27Em-1(8"]+ /( | |59 — 51| 7P |8 Em—1(B)=(m=2t g, |
—(m—1)a
where X,,_1(f') = B2+ -+ + B and [z]+ = max(z,0). If 3,,_1(8") < m —2 (so
that [ satisfies (iv)), the conclusion follows from the following bound valid for some
constant ¢ depending only on 8 and all x > |s1|/2,

@ z/|s1]
/ |sg — 51| Prdsg = [s1|' / lu— 1)1 du < ex! =P .

o —z/|s1]

Now if ¥,,_1(8") > m — 2, we observe that

(m—1)a
/ |52 — 51| sg| TP A O dsy = Ty 0 1y (515 81, B 4+ A B — (m = 2))
—(m—1)a
The upper bound of Jy, 4(s1;5) then follows from the case m = 2.
(2) If B satisfies the condition of Case (iii), then 3’ either satisfies the conditions of

Case (ii) or (iii). The proof is exactly similar to this just above up to a logarithmic
correction.

O
Lemma 10.7. Let S > 1 and (B1,582) € [0,1)% such that By + Bo < 1, and set g;(t) =
[t =P (1 4 |t[)%~5. Then

sup (1/ /Rz(l + v[{wy + wa}|) 2 g1 (w1)ga(ws) dw> <00 (10.19)

v>0
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Proof. Denote by J(v) the quantity in parentheses in ([I0.19]). We denote here by C' a positive
constant that may change from line to line, but whose value does not depend on v. Setting
u = wy + we in the integral with respect to w; and then integrating with respect to wo,
Lemma 8.1 in [6] yields

J() < oy/ (14 w|{u}) 2 (1 + Jul)~Sdu

u€R

Since the integral is bounded independently of v, J is bounded on compact subsets of [0, o),
hence we may consider v > 2 in the remainder of the proof. We shall use the bound 1+ z >
max(1,z) for x > 0. Splitting the integral of the last display on the two domains defined by
the position of |[{u}| with respect to v =1, we get J(v) < C(Ji(v) + J2(v)), with

By=v [ ) du,
{u}<v—1

and
() = y—l/ a2 (1 + Jul) ™S du.

[{u}|>v—1

We have
2kn+v1
Ti(v) = yz/ (1+ |u))~Sdu .

keZ 2km—v—1
For v > 2 the integral in the parentheses of the last display is less than 20~ (1/2 + [2k7|)~%.
Since S > 1, we get that Ji(u) is bounded over the domain v > 2.

It remains to prove that J(v) is bounded for v large enough. We have, setting v = u— 2k
for each k,

Jo(v) :y—lz/ 0| 72(1 + [2km +v]) ™% dv.
keZ v1<|v|<r
Now since
sup 2(1/2 + |2k +v]) ™ < 00,
veR kez
we get by inverting the integral with the summation,
Jo(v) < Cl/_l/ lv|~2 dv .
voi<y|<n

Hence J5 is bounded over the domain v > 2, completing the proof. O

APPENDIX A. INTEGRAL REPRESENTATIONS

It is convenient to use an integral representation in the spectral domain to represent the
random processes (see for example [14, [16]). The stationary Gaussian process { Xy, k € Z}
with spectral density (L2]) can be written as

X, = /_ 7; M2\ AW (N) = /

™ ei)\Zf*l/2()\) -

This is a special case of

7(g) = /R o)AV (), (A2)
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where /W() is a complex—valued Gaussian random measure satisfying, for any Borel sets A and

Bin R, E(W(A)) =0, E(W(A)W(B)) = |AN B| and W(A) = W(—A). The integral (A.2) is
defined for any function g € L?(R) and one has the isometry

- [ loto)Pa.

The integral I(g), moreover, is real-valued if g(z) = g(—z).
We shall also consider multiple It6—Wiener integrals

1"

To) = [ g0 AJAT () -3

where the double prime indicates that one does not integrate on hyperdiagonals \; = £A;,7 #

7. The integrals ]A'q(g) are handy because we will be able to expand our non—linear functions
G(X}) introduced in Section [I in multiple integrals of this type.

These multiples integrals are defined for g € ﬁ(Rq, C), the space of complex valued func-
tions defined on RY satisfying

g(—=x1,--+ ,—xg) = g(a1, - ,xq) for (z1, -+ ,24) € R, (A.3)

lolfe = [ oo, ) dor -+ day < 0. (A

~

The integral fq(g) is real valued and verifies fq(g) = 1,(g), where

~ 1
9(1'1,"’ 7‘Tq) = azg('xa(l)f” 7xa(q)) :

Here the sum is over all permutations of {1,...,q}.

~ -~ Hd1,G2)12 ifq=¢
E(Iq<gl>qu<gz>>={g@“m il (A5)

Hermite polynomials are related to multiple integrals as follows : if X = [, g(:n)d/W(x) with

X?) = [z ¢*(z)dz = 1 and g(z) = g(—=) so that X has unit variance and is real-valued,
then

1,00 =16 = [ g(er) o)W - (e, (A0
Since X has unit variance, one has for any £ € Z,
00 =1, ([ e eame) )
= /( » M) o (P2(60) e x fU2(E,)) AW () -+ AWV (E,)
Then by (ZI3), we have
= > W (k= 0 o (Xe) = Too (%) (A7)

LETL
with

£, &) = et s RO ) P e FENIE (6 (AB)
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because by (2.35]),
Zei€(§1+-~-+5q)h§K) (yjk —0) = emkrt+&) §- e—iU(51+v~+£q)h§,K)(u)
LEL U€EZL
- ei“/jk(51+"'+5q)ﬁ§K) (fl S fq) .
The following proposition can be found in [17]. It is an extension to our complex—valued

setting of a corresponding result in [16] for multiple integrals in a real-valued setting. Since
it plays an essential role, we provide a proof for the convenience of the reader.

Proposition A.1. Let (q,q_’) € N2. Assume that f,g are two symmetric functions belonging
respectively to L2(RY) and L2(RY) then the following product formula holds :

ang’

LN = s () (1) frraant o), (A9)
p=0
where for any p e {1,--- ,qAN{q'}
(f@pg) (tla e ,tq+q’—2p) ( ) f(t17 o q pyS )g(tq—p+1, o 7tq+q/—2p7 _S)dps

(A.10)
Proof. We first assume that f and g are of the form

f=h®f,g=0®g,
where f1, f2, 91,92 belong respectively to L2(R4~P,C), L2(R? P (C) L2(RP,C), L%(R?,C). In

that special case, using that for any ¢ > 0 and any f € L2(R?), I,(f) = (2m)~% 2Iq(f), one
has

LN (9) = I(f1 @ f2)Iy (91 © go)
= (2m)~(atd)/2] (f1®f2) (1 ® g2) -

The assumptions on functions fi, f2, 91,92 imply that their Fourier transform ]?1,]?2, a1, G2
are real-valued functions belonging respectively to L?(R?~?,R), L?*(R? ~?,R), L*(R?,R) and
L*(R%,R). Then one can apply the usual product formula for multiple Wiener-Ité integrals
(see for example [16]) and deduce that :

ang

I(f1 ® f2)Iy (31 ® 32) Zp'< >< > crr—2p((1® F2) @, (G ® 32)) -
Note now that for any p

(@ f) @@ @@) = | Al tep) ($)Fi(tgpit,  torg—2p)F2(s)ds

= 1(t17 T atq—p)g\l(tq—p-i-h T 7tq+q’—2p) /]R fQ(S)gé s)ds
D

= Rt s tgp)Gi(tgpst +tgr—2) / o) gD)dt
RP

= l(tl’ T vtq—p)gAl(tq—pH, te ’tq+q’—2p)/R f2(t)92(_t)dt )
D
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since go(t) = go(—t). Hence

v 0 298 G0 @) = ([ 0004 % Lysy-lFi 0 3

—

= < fQ(t)gg(—t)dt> X Igtq-2p(f1 ® g1)
Rp

N < RP fz(t)92(—t)dt> x (2m) T+ =221 LT (f1 @ g1)

We thus get the claimed results for this special case. The conclusion for general f and g
follows using the density of L?(R??,R) ® L?(R?,R) in L?(R%,R). O

1]
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