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M. Clausel, F. Roueff, M. S. Taqqu, C. Tudor
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Abstract

We consider stationary processes with long memory which are non–Gaussian and rep-
resented as Hermite polynomials of a Gaussian process. We focus on the corresponding
wavelet coefficients and study the asymptotic behavior of the sum of their squares since
this sum is often used for estimating the long–memory parameter. We show that the limit
is not Gaussian but can be expressed using the non–Gaussian Rosenblatt process defined
as a Wiener Itô integral of order 2. This happens even if the original process is defined
through a Hermite polynomial of order higher than 2.

1 Introduction

Wavelet analysis is a popular method for estimating the memory parameter of stochastic
processes with long–range dependance. The idea of using wavelets to estimate the memory
parameter d goes back to Wornell and Oppenheim [1992] and Flandrin [1989a,b, 1991, 1999].
See also Abry and Veitch [1998], Abry et al. [1998]. Wavelet methods are an alternative
to the Fourier methods developed by Fox and Taqqu (Fox and Taqqu [1986]) and Robin-
son (Robinson [1995a,b]. For a general comparison of Fourier and wavelet approach, see
Faÿ et al. [2009]. The case of the Gaussian processes, especially the fractional Brownian mo-
tion has been widely studied. In this paper we will make an analysis of the wavelet coefficients
of stationary processes with long memory which are not Gaussian. The need of non-Gaussian
self-similar processes in practice (for example in hydrology) is mentioned in Taqqu [1978] based
on the study of stochastic modeling for river-flow time series in Lawrance and Kottegoda
[1977]. The wavelet analysis of non-Gaussian stochastic processes has been much less treated
in the literature. Bardet and Tudor, see Bardet and Tudor [2010], considered the case of the
Rosenblatt process which is a non-Gaussian self-similar process with stationary increments
leaving in the second Wiener chaos, that is, it can be expressed as a double iterated integral
with respect to the Wiener process. It can be also defined as a Hermite process of order
2, while the fractional Brownian motion is a Hermite process of order 1. We refer to Sec-
tion 3 for the definition of the Rosenblatt process (see also Taqqu [1979], Tudor [2008]), and
to Chronopoulou et al. [2011], Pipiras and Taqqu [2011], Taqqu [1979] for the definition and
various properties of the Hermite process.

In the present work, we consider processes expressed as a Hermite polynomial of order
greater than 1 of a Gaussian time series. This will allow us to gain insight into more compli-
cated situations. We will derive the limit theorems that are needed to justify wavelet–based
estimation procedures of the memory parameter. We will investigate the estimation problem
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in another paper.

Denote by X = {Xt}t∈Z a centered stationary Gaussian process with unit variance and
spectral density f(λ), λ ∈ (−π, π). Such a stochastic process is said to have short memory or
short–range dependence if f(λ) is positive and bounded around λ = 0 and long memory or
long–range dependence if f(λ) → ∞ as λ→ 0. We will suppose that {Xt}t∈Z has long–memory
with memory parameter 0 < d < 1/2, that is,

f(λ) ∼ |λ|−2df∗(λ) as λ→ 0 (1)

where f∗(λ) is a bounded spectral density which is continuous and positive at the origin. It
is convenient to set

f(λ) = |1− e−iλ|−2df∗(λ), λ ∈ (−π, π] . (2)

Since the process X is stationary, its spectral density is integrable, which implies d < 1
2 .

We shall also consider a process {Yt}t∈Z, not necessarily stationary but its difference ∆KY
of order K ≥ 0 is stationary. Moreover, instead of supposing that ∆KY is Gaussian, we will
assume that (

∆KY
)
t
= Hq0(Xt), t ∈ Z , (3)

where (∆Y )t = Yt − Yt−1, where X is Gaussian with spectral density f satisfying (2) and
where Hq0 is the q0–th Hermite polynomial.

We will focus on the wavelet coefficients of Y = {Yt}t∈Z. Since {Yt}t∈Z is random so will
be its wavelet coefficients which we denote by {Wj,k, j ≥ 0, k ∈ Z}, where j indicates the
scale and k the location. These wavelet coefficients are defined by

Wj,k =
∑

t∈Z

hj(γjk − t)Yt

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale j, for
example γj = 2j and hj is a filter whose properties will be listed below. We follow the
engineering convention where large values of j correspond to large scales. Our goal is to find
the distribution of the empirical quadratic mean of these wavelet coefficients at large scales
j → ∞, that is, the asymptotic behavior of the scalogram

Sn,j =
1

n

n−1∑

k=0

W 2
j,k , (4)

adequately normalized as the number of wavelet coefficients n and j = j(n) → ∞. This is
a necessary and important step in developing methods for estimating the underlying long
memory parameter d, see the references mentioned at the beginning of this section.

When q0 = 1, the behavior of Sn,j has been studied in Roueff and Taqqu [2009b]. In this
case, under certain conditions, the limit as j, n → ∞ of the suitably renormalized sequence
Sn,j is Gaussian. If q0 ≥ 2 only few facts are known on the behavior of the scalogram Sn,j.
In Bardet and Tudor [2010], the authors have made a wavelet analysis of the Rosenblatt
process (see Definition 3.1 with q = 2). This situation roughly corresponds to the case q0 = 2
(the second Hermite polynomial). It has been shown that its associated scalogram has a non-
Gaussian behavior, that is, after normalization it converges to a Rosenblatt random variable.
Basically, what happens is the following: the random variable H2(Xt) is, for every t ∈ Z an
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element of the second Wiener chaos and its square can be decomposed, using the properties
of multiple stochastic integrals, as a sum of a multiple integral in the fourth Wiener chaos and
a multiple integral in the second Wiener chaos. It turns out that the leading term is the one
in the second Wiener chaos which converges to a Rosenblatt random variable (a Rosenblatt
process at time 1). Wavelet analysis for G = Hq with q > 2 has not been done until now.
Some intuition can be gained from the study of quadratic variations of the increments of
the Hermite process, in Chronopoulou et al. [2011]. In this case the starting process is self–
similar, that is, invariant under scaling. Again the limit turns out to be the Rosenblatt
random variable. Briefly since the Hermite process is an element of the qth Wiener chaos, its
square (minus the expectation of its square) can be expressed as a sum of multiple integrals of
orders 2,4,.. until 2q. It turns out that the main term is the one in the second Wiener chaos
which converges to a Rosenblatt random variable. This may suggest that in our situation one
would have perhaps a “reduction theorem” as in Taqqu [1975], stating that it is the lower
order term which dominates. This is not the case however. We will show in a subsequent
paper that higher–order Hermite processes can appear in the limit even when the initial data
are a mixture of a Gaussian and non–Gaussian components.

The paper is structured as follows. In Section 2 we introduce the wavelet filters and state
the assumptions imposed on them. In Section 3 we state our main result corresponding to
q0 ≥ 2 and we introduce the Rosenblatt process which appears as limit. In Section 4 we give
the chaos expansion of the scalogram. Section 5 and 6 describe the asymptotic behavior of
the various terms appearing in the decomposition of the scalogram. Finally, Sections 7 and 8
contain technical lemmas used throughout our paper.

2 The wavelet coefficients

The Gaussian sequence X = {Xt}t∈Z with spectral density (2) is long–range dependent
because d > 0 and hence its spectrum explodes at λ = 0. Whether {Hq0(Xt)}t∈Z is also
long-range dependent depends on the respective values of q0 and d. We show in Clausel et al.
[2010], that the spectral density of {Hq0(Xt)}t∈Z behaves proportionally to |λ|−δ+(q0) as λ→ 0,
where

δ+(q) = max(δ(q), 0) and δ(q) = qd− (q − 1)/2, q = 1, 2, 3, . . . , (5)

and hence δ+(q0) is the memory parameter of {Hq0(Xt)}t∈Z . Therefore, since 0 < d < 1/2,
in order for {Hq0(Xt)}t∈Z, q0 ≥ 1, to be long–range dependent, one needs

δ(q0) > 0 ⇔ (1− 1/q0)/2 < d < 1/2 , (6)

that is, d must be sufficiently close to 1/2. Specifically, for long–range dependance,

q0 = 1 ⇒ d > 0, q0 = 2 ⇒ d > 1/4, q0 = 3 ⇒ d > 1/3, q0 = 4 ⇒ d > 3/8 . . .

From another perspective, for all q0 ≥ 1

δ(q0) > 0 ⇔ q0 < 1/(1 − 2d) , (7)

and thus {Hq0(Xt)}t∈Z is short–range dependent if q0 ≥ 1/(1 − 2d). In the following, we
always assume that {Hq0(Xt)}t∈Z has long memory, that is,

1 ≤ q0 < 1/(1 − 2d) or, equivalently, 0 < δ(q0) < 1/2 . (8)
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As indicated in the introduction, we consider the process {Yt}t∈Z, where ∆KYt = Hq0(Xt)
for any t ∈ Z and for some K ≥ 0 (see (3)). We are interested in the wavelets coefficients of
the process {Hq0(Xt)}t∈Z. To obtain them, one applies a linear filter hj(τ), τ ∈ Z, at each
scale j ≥ 0. We shall characterize below the filters hj(τ) by their discrete Fourier transform :

ĥj(λ) =
∑

τ∈Z

hj(τ)e
−iλτ , λ ∈ [−π, π] , hj(τ) =

1

2π

∫ π

−π
ĥj(λ)e

iλτdλ, τ ∈ Z . (9)

The resulting wavelet coefficients Wj,k, where j is the scale and k the location are defined as

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KHq0(Xt), j ≥ 0, k ∈ Z, (10)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale j, for
example γj = 2j . We do not assume that the wavelet coefficients are orthogonal nor that
they are generated by a multiresolution analysis, but only that the filters hj concentrate
around the zero frequency as j → ∞ with some uniformity, see Assumptions (W-b)–(W-c)
below.

To study the joint convergence at several scales going to infinity, wavelet coefficients can
be considered as a process Wj+m,k indexed by m,k and let j → ∞ as in Clausel et al. [2010].
Here we are interested in the scalogram defined as the empirical square mean (4) with n equal
to the number of wavelets coefficients at scale j available from N observations of the original
process Y1, . . . , YN . The joint asymptotic behavior at various scales here implies to deal with
different down-sampling rates γj and different numbers of available wavelet coefficients n at
the same time, since both depend on the scale j. However it is shown in Roueff and Taqqu
[2009b] that the joint behavior of the scalogram at several scales can be deduced from the
joint behavior of the statistic (4) considered with the same j and n but with different filters
hℓ,j ℓ = 1, . . . ,m instead. Hence we adopt this setup in the following as it will moreover ease
the comparison between the cases q0 > 1 treated in this contribution and the case q0 = 1
which follows from the result obtained in Roueff and Taqqu [2009a], and stated in the special
case of the scalogram in [Roueff and Taqqu, 2009b, Theorem 1]. Our assumption on the filters
hℓ,j, ℓ = 1, . . . ,m are the same, except that we allow γj 6= 2j for sake of generality, and we
assume locally uniform convergence in the asymptotic behavior. They are satisfied in the
standard wavelet analysis described in Moulines et al. [2007].

From now on, the wavelet coefficient Wj,k defined in (10) is valued in Rm with hj repre-
senting am-dimensional vector with entries hℓ,j, ℓ = 1, . . . ,m. We will use bold faced symbols
Wj,k and hj to emphasize the multivariate setting,

Wj,k =
∑

t∈Z

hj(γjk − t)Yt =
∑

t∈Z

hj(γjk − t)∆−KHq0(Xt), j ≥ 0, k ∈ Z. (11)

(W-a) Finite support: For each ℓ and j, {hℓ,j(τ)}τ∈Z has finite support.

(W-b) Uniform smoothness: There exists M ≥ 0, α > 1/2 and C > 0 such that for all j ≥ 0
and λ ∈ [−π, π],

|ĥj(λ)| ≤
Cγ

1/2
j |γjλ|M

(1 + γj |λ|)α+M
, (12)
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where |x| denotes the Euclidean norm of vector x. By 2π-periodicity of ĥj this in-
equality can be extended to λ ∈ R as

|ĥj(λ)| ≤ C
γ
1/2
j |γj{λ}|M

(1 + γj |{λ}|)α+M
. (13)

where {λ} denotes the element of (−π, π] such that λ− {λ} ∈ 2πZ.

(W-c) Asymptotic behavior: There exist a sequence of phase functions Φj : R → (−π, π] and
some function ĥ∞ : R → Cp such that

lim
j→+∞

γ
−1/2
j ĥj(γ

−1
j λ)eiΦj(λ) = ĥ∞(λ) , (14)

locally uniformly on λ ∈ R.

In (W–c), locally uniformly means that for all compact K ⊂ R,

sup
λ∈K

∣∣∣γ−1/2
j ĥj(γ

−1
j λ)eiΦj(λ) − ĥ∞(λ)

∣∣∣→ 0 .

Assumptions (12) and (14) imply that for any λ ∈ R,

|ĥ∞(λ)| ≤ C
|λ|M

(1 + |λ|)α+M
. (15)

Hence vector ĥ∞ has entries in L2(R). We let h∞ be the vector of L2(R) inverse Fourier
transforms of ĥℓ,∞, ℓ = 1, . . . ,m, that is

ĥ∞(ξ) =

∫

R

h∞(t)e−itξ dt, ξ ∈ R . (16)

Observe that while ĥj is 2π–periodic, the function ĥ∞ has non–periodic entries on R.
For the connection between these assumptions on hj and corresponding assumptions on the
scaling function ϕ and the mother wavelet ψ in the classical wavelet setting see Moulines et al.
[2007] and Roueff and Taqqu [2009b]. In particular, in that case, for a single scale analysis

p = 1, one has ĥ∞ = ϕ̂(0)ψ̂.
For M ≥ K, a more convenient way to express Wj,k is to incorporate the linear filter

∆−K in (11) into the filter hj and denote the resulting filter h
(K)
j . Then

Wj,k =
∑

t∈Z

h
(K)
j (γjk − t)Hq0(Xt) , (17)

where
ĥ
(K)
j (λ) = (1− e−iλ)−K ĥj(λ) (18)

is the component wise discrete Fourier transform of h
(K)
j . Since {Hq0(Xt), t ∈ Z} is stationary,

so is {Wj,k, k ∈ Z} for each scale j. Using (13), we further get,

∣∣∣ĥ(K)
j (λ)

∣∣∣ ≤ Cγ
1/2+K
j

|γj{λ}|M−K

(1 + γj |{λ}|)α+M
, λ ∈ R, j ≥ 1 . (19)
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In particular, if M = K we get that

∣∣∣ĥ(K)
j (λ)

∣∣∣ ≤ Cγ
1/2+K
j (1 + γj |{λ}|)−α−K , λ ∈ R, j ≥ 1 . (20)

Observing that the right-hand side of (12) is decreasing in M the bound (20) continues to
hold if M ≥ K.

By Assumption (12), hj has vanishing moments up to orderM−1, that is, for any integer
0 ≤ m ≤M − 1, ∑

t∈Z

hj(t)t
m = 0 . (21)

Observe that ∆KY is centered by definition. However, by (21), the definition of Wj,k only
depends on ∆MY . In particular, provided that M ≥ K + 1, its value is not modified if a
constant is added to ∆KY , whenever M ≥ K + 1.

3 Main result

Recall that

(∆KY )t = Hq0(Xt), t ∈ Z .

The condition (8) ensures such that {Hq0(Xt)}t∈Z is long-range dependent (see Clausel et al.
[2010], Lemma 4.1). Our main result deals with the asymptotic behavior of the scalogram
Sn,j, defined in the case p = 1 by (4) as j, n→ ∞, that is, as n→ ∞ (large sample behavior)
with j = j(n) being an arbitrary diverging sequence (large scale behavior). More precisely,
we will study the asymptotic behavior of the sequence

Sn,j =

[
1

n

n−1∑

k=0

(
W 2

ℓ,j,k − E(|Wℓ,j,0|2)
)]

ℓ=1,...,m

, (22)

adequately normalized as j, n → ∞, where Wℓ,j,k, ℓ = 1, . . . ,m, denote the m entries of
vector Wj,k. The limit will be expressed in terms of the Hermite processes which are defined
as follows.

Definition 3.1 The Rosenblatt process of index d with

1/4 < d < 1/2 , (23)

is the continuous time process

Zd(t) =

∫ ′′

R2

ei(u1+u2) t − 1

i(u1 + u2)
|u1|−d|u2|−d dŴ (u1)dŴ (u2), t ∈ R . (24)

The multiple integral (24) with respect to the complex-valued Gaussian random measure Ŵ is
defined in Appendix A. The symbol

∫ ′′
R2 indicates that one does not integrate on the diagonal

u1 = u2. The integral is well-defined when (23) holds because then it has finite L2 norm.
This process is self–similar with self-similarity parameter

H = 2d ∈ (1/2, 1),
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that is for all a > 0, {Zd(at)}t∈R and {aHZd(t)}t∈R have the same finite dimensional distri-
butions, see Taqqu [1979].

We now list the assumptions needed in order to prove our main result:
Assumptions A {Wj,k, j ≥ 1, k ∈ Z} are the wavelet coefficients defined by (11) , where

(i) X is a stationary Gaussian process with spectral density f satisfying (2) with 0 < d <
1/2;

(ii) Hq0 is the q0 th Hermite polynomial where q0 satisfies condition (8);

(iii) the sequence of positive integers (γj)j≥1 is non-decreasing and diverging;

(iv) wavelet filters hj = [hℓ,j ]ℓ=1,...,m, j ≥ 1, satisfy (W-a)–(W-c).

The definition of Hermite polynomials is recalled in Appendix A. The following theorem
gives the limit of (22), suitably normalized, as the number of wavelet coefficients and the
scale j = j(n) tend to infinity.

Theorem 3.1 Suppose that Assumptions A holds and define the scalogram Sn,j by (22). Let
(nj) be any diverging sequence of integers.

(a) Suppose that γj is a sequence of even integers, q0 = 1 and M ≥ K + d. Then, as j → ∞,

n
1/2
j γ

−2(d+K)
j Snj ,j

L−→ N (0,Γ) , (25)

Γi,i′ =
(f∗(0))2

π

∫ π

−π

∣∣∣∣∣∣
∑

p∈Z

|λ+ 2pπ|−2(K+d)[ĥi,∞ĥi′,∞](λ+ 2pπ)

∣∣∣∣∣∣

2

dλ , 1 ≤ i, i′ ≤ m ,

(26)

(b) Recall that δ(q) is defined in (5). Suppose that q0 ≥ 2 and M ≥ K + δ(q0 − 1). Then as
j → ∞,

n1−2d
j γ

−2(δ(q0)+K)
j Snj ,j

L−→ f∗(0)q0 Lq0−1 Zd(1) . (27)

where Zd(1) is the Rosenblatt process in (24) evaluated at times t = 1, f∗(0) is the
short-range spectral density at zero frequency and where Lq0−1 is the deterministic m-

dimensional vector [Lq0−1(ĥℓ,∞)]ℓ=1,...,m with finite entries defined by

Lp(g) =

∫

Rp

|g(u1 + · · ·+ up)|2
|u1 + · · ·+ up|2K

p∏

i=1

|ui|−2d du1 · · · dup, ℓ = 1, . . . ,m, , (28)

for any g : R → C and p ≥ 1.

This theorem is proved in Section 6.

Remark 3.1 Since δ(1) = d we observe that the exponent of γj in the rate of convergence
of Sn,j are the same for both cases q0 = 1 and q0 ≥ 2, see (25) and (27), respectively. They
correspond to the order of E|Wj,0|2. In contrast, the exponent of n is always larger in the
second case, since q0 ≥ 2 implies 2d − 1 > −1/2. The statistical behavior of the limits
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are also very different in the two cases. In (25) the limit is Gaussian while in (27), the
limit is Rosenblatt. Another difference is that the entries of the limit vector in (27) have
cross-correlations equal to 1 (they only differ through a multiplicative constant). In contrast,
in (25), by the Cauchy-Schwartz Inequality, this only happens if ĥi,∞(λ+2pπ)/ĥi′ ,∞(λ+2pπ)
does not depend on p ∈ Z for almost every λ.

Remark 3.2 Hq0(Xt) involves multiple integrals of order q0, W
2
j,k and hence Sn,j in (22)

involves sums of multiple integrals of order 0, 2,4,6... up to 2q0 but the limiting Rosenblatt
process in Theorem 3.1 involves only a double integral, albeit with a non–random factor Lq0−1

expressed as a non–random multiple integral of order q0 − 1.

Example. Assume that we are given a compactly supported multi–resolution analysis and
consider the wavelet basis {ψj,k}(j,k)∈Z×Z associated to this multi–resolution analysis. In this
case, γj = 2j . The number n of wavelet coefficients available at scale j, is related both to the
number N of observations Y1, · · · , YN of the time series Y and to the length T of the support
of the wavelet ψ. More precisely, one has (see Moulines et al. [2007] for more details),

n = [2−j(N − T + 1)− T + 1] ∼ 2−jN as n or 2−jN → ∞ ,

where [x] denotes the integer part of x for any real x. Remark that the assumption n →
∞ implies that N → ∞ faster than 2j . When n, j → ∞, the centered scalogram Sn,j is
asymptotically Rosenblatt. We recover the results of Bardet and Tudor who let Y be the
Rosenblatt process itself. This roughly corresponds here to the case q0 = 2 (see Theorem 4
of Bardet and Tudor [2010]).

4 Chaos expansion of the scalogram

Here we take p = 1 without loss of generality, since the case p ≥ 2 can be deduced by applying
the case p = 1 to each entries. The purpose of this section is to express the scalogram

Sn,j =
1

n

n−1∑

k=0

W 2
j,k , (29)

as a sum of multiple integrals Î(·) (defined in Appendix A) with respect to the Gaussian

random measure Ŵ . Our main tool will be the product formula for multiple Wiener-Itô
integrals. Each Wj,k is a multiple integral of order q0 of some kernel fj,k, that is

Wj,k = Îq0(fj,k). (30)

Now, using the product formula for multiple stochastic integrals (109), one gets, as shown in
Proposition 4.1 that, for any (n, j) ∈ N2,

Sn,j − E(Sn,j) =
1

n

n−1∑

k=0

W 2
j,k − E[W 2

j,0] =

q0−1∑

p=0

p!

(
q0
p

)2

(2π)pS
(p)
n,j (31)

where, for all 0 ≤ p ≤ q0 − 1,

S
(p)
n,j = Î2q0−2p(gp) .
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That is, for every j, n, the random variable S
(p)
n,j is an element of the chaos of order 2q0 − 2p.

The function gp(ξ), ξ = (ξ1, . . . , ξ2q0−2p) ∈ R2q0−2p is defined for every p ∈ {0, · · · , q0 − 1} as

gp(ξ) =
1

n

n−1∑

k=0

(fj,k⊗pfj,k) , (32)

where the contraction ⊗p is defined in (110).
Let us formalize the above decomposition of Sn,j and give a more explicit expression for

the function gp in (32).

Proposition 4.1 For all non–negative integer j, {Wj,k}k∈Z is a weakly stationary sequence.
Moreover, for any (n, j) ∈ N2,

Sn,j − E(Sn,j) =

q0−1∑

p=0

p!

(
q

p

)2

(2π)pS
(p)
n,j , (33)

where, for all 0 ≤ p ≤ q0 − 1,

S
(p)
n,j = Î2q0−2p(gp) , (34)

and where, for all ξ = (ξ1, . . . , ξ2q0−2p) ∈ R2q0−2p,

gp(ξ) = Dn(γj (ξ1 + · · ·+ ξ2q0−2p)) (35)

×
2q0−2p∏

i=1

[
√
f(ξi)1(−π,π)(ξi)]× κ̂

(p)
j (ξ1 + · · ·+ ξq0−p, ξq0−p+1 + · · · + ξ2q0−2p) .(36)

Here f denotes the spectral density (2) of the underlying Gaussian process X and

Dn(u) =
1

n

n−1∑

k=0

eiku =
1− einu

n(1− eiu)
, (37)

denotes the normalized Dirichlet kernel. Finally, for ξ = (ξ1, ξ2) ∈ R2, if p 6= 0,

κ̂
(p)
j (ξ1, ξ2) =

∫

(−π,π)p

(
p∏

i=1

f(λi)

)
ĥ
(K)
j (λ1+· · ·+λp+ξ1)ĥ(K)

j (λ1 + · · · + λp − ξ2) d
pλ , (38)

and, if p = 0,

κ̂
(p)
j (ξ1, ξ2) = ĥ

(K)
j (ξ1)ĥ

(K)
j (ξ2). (39)

Notation. In (38), dpλ refers to p-dimensional Lebesgue measure integration. To simplify
the notation, we shall denote by Σq, the Cq → C function defined, for all q ∈ Z+ and
y = (y1, . . . , yq) ∈ Cq, by

Σq(y) =

q∑

i=1

yi , (40)

and for any (q1, q2) ∈ Z2
+, we denote by Σq1,q2 the Cq1 × Cq2 → C2 function defined for all

y = (y1, . . . , yq1+q2) ∈ Cq1 × Cq2 by

Σq1,q2(y) =




q1∑

i=1

yi,

q2∑

i=q1+1

yi


 . (41)
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With these notations, (34), (38) and (39) become respectively

S
(p)
n,j = Î2q0−2p

(
Dn ◦ Σ2q0−2p(γj × ·)× [

√
f1(−π,π)]

⊗(2q0−2p) × κ̂
(p)
j ◦ Σq0−p,q0−p

)
, (42)

κ̂
(p)
j (ξ1, ξ2) =





∫
(−π,π)p f

⊗p(λ) ĥ
(K)
j (Σp(λ) + ξ1)ĥ

(K)
j (Σp(λ)− ξ2) d

pλ if p 6= 0,

[ĥ
(K)
j ⊗ ĥ

(K)
j ](ξ1, ξ2) if p = 0 .

(43)

where ◦ denotes the composition of functions, λ = (λ1, · · · , λp) and f⊗p(λ) = f(λ1) · · · f(λp)
is written as a tensor product.

Remark 4.1 The kernel κ̂
(p)
j can also be expressed on R2 using the covariance sequence of

the process X, namely,

κ̂
(p)
j (ξ1, ξ2) = (2π)p

∑

m∈Z2

h
(K)
j (m1)h

(K)
j (m2) E(Xm2Xm1)

p e−i(m1ξ1+m2ξ2) . (44)

This follows from the relation

E(Xm2Xm1) =
1

2π

∫ π

−π
ei(m2−m1)λf(λ)dλ ,

and (18) and the definition (9) of the discrete Fourier transform ĥj .

Proof of Proposition 4.1 By (4),

Sn,j =
1

n

n−1∑

k=0

W 2
j,k . (45)

Using (30) and the product formula for multiple stochastic integrals (109) of Proposition A.1,
we have

W 2
j,k = Îq0(fj,k)Îq0(fj,k) =

q0∑

p=0

(2π)pp!

(
q0
p

)2

Î2q0−2p (fj,k⊗pfj,k) . (46)

Therefore,

Sn,j =
1

n

n−1∑

k=0

W 2
j,k =

q0∑

p=0

(2π)pp!

(
q0
p

)2

Î2q0−2p (gp) , (47)

where

gp =
1

n

n−1∑

k=0

fj,k⊗pfj,k .

By (108), for all ξ = (ξ1, · · · , ξq0) ∈ Rq0 ,

fj,k(ξ) = exp ◦Σq0(ikγjξ)
(
ĥ
(K)
j ◦Σq(ξ)

) (
f⊗q0(ξ)

)1/2 1⊗q0
(−π,π)(ξ) . (48)
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If, p = 1, 2, . . . , q0 − 1, let ξ = (ξ1, · · · , ξ2q0−2p). The contraction fj,k⊗pfj,k defined on
R2q0−2p equals by (110),

fj,k⊗pfj,k(ξ)

=

∫

Rp

fj,k(ξ1, · · · , ξq0−p, s)fj,k(ξq0−p+1, · · · , ξ2q0−2p,−s)dps

= exp ◦Σ2q0−2p(ikγjξ)× [
√
f1(−π,π)]

⊗2q0−2p(ξ)

×
∫

Rp

ĥ
(K)
j (ξ1 + · · ·+ ξq0−p +Σp(λ))ĥ

(K)
j (ξq0−p+1 + · · ·+ ξ2q0−2p − Σp(λ)) × [f1(−π,π)]

p(λ) dpλ

= exp ◦Σ2q0−2p(ikγjξ)× [
√
f1(−π,π)]

⊗2q0−2p(ξ)× κ̂
(p)
j ◦Σq0−p,q0−p(ξ) ,

where κ̂
(p)
j is defined by (38),(39), or equivalently by (43),(39) and where we used that

ĥ
(K)
j (·) = ĥ

(K)
j (−·). We therefore get that gp is a function with 2q0 − 2p variables given

by

gp(ξ) =
1

n

n−1∑

k=0

exp ◦Σ2q0−2p(ikγjξ)× [
√
f1(−π,π)]

⊗2q0−2p(ξ)× κ̂
(p)
j ◦ Σq0−p,q0−p(ξ) .

The Dirichlet kernel Dn appears when one computes the sum 1
n

∑n−1
k=0 exp ◦Σ2q0−2p(ikγjξ).

This implies the formula (35).

The chaos of order zero does not appears in (33) where Sn,j − E(Sn,j) is considered. It

appears however in the expression (47) of Sn,j in the term with p = q0 where Î2q0−2p = Î0. In
this case, we have

(2π)q0q0!Î0(fj,k⊗pfj,k) = (2π)q0q0!‖f̂j,k‖2L2(Rq0 ) = q0!‖fj,k‖2L2(Rq0 ) = E(|Wj,k|2) ,

corresponding in (47) to the deterministic term

1

n

n∑

k=1

E(|Wj,k|2) = E(|Wj,0|2) = E(Sn,j) ,

by (45). Therefore Sn,j − E(Sn,j) can be expressed as (33). �

As we can see from (33), the random variable Sn,j can be expanded into a sum of multiple
stochastic integrals starting from order zero (which corresponds to the deterministic term
E(Sn,j)). The order of the chaos appearing in the decomposition of Sn,j could be greater or
smaller than the critical value 1/(1 − 2d). This means that Sn,j may admit summands with
long-range dependence (orders smaller than 1/(1− 2d) ) and short range dependence (orders
greater than 1/(1 − 2d)). We will see that these two kind of terms have different behavior.
Another issue concerns p, the order of the contraction in the product formula for multiple

integrals. The case p = 0 must be discussed separately because the function κ̂
(p)
j in (38) has

the special form (39) if p = 0.

To study Sn,j as j, n → ∞, we need to study S
(p)
n,j which is given in (42). We first estimate

the L2 norm of S
(p)
n,j .
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5 An upper bound for the L2 norm of the terms S
(p)
n,j

To identify the leading term of the sum Sn,j−E(Sn,j), we will give an upper bound for the L2

norms of the terms S
(p)
n,j 0 ≤ p < q0 defined in (34) and (42). Then, in Section 6, we investigate

the asymptotic behavior of the leading term of Sn,j. It directly implies the required result

about the asymptotic bahavior of the scalogram. The expression (42) of S
(p)
n,j involves the

kernel κ̂
(p)
j in (43) which vanishes when ξ1 = 0 or ξ2 = 0 if p = 0 because ĥj(0) = 0 by (12).

But the expression (43) of κ̂
(p)
j implies that it does not vanish if p > 0 because

κ̂
(p)
j (0, 0) =

∫

(−π,π)p

(
p∏

i=1

f(λi)

)∣∣∣ĥj(Σp(λ))
∣∣∣
2
dpλ > 0 .

All these considerations lead one to distinguish the following two cases :

• The case p 6= 0.

• The case p = 0.

5.1 The case p 6= 0

In the case p 6= 0 we give an upper bound for ‖S(p)
n,j‖2 = E(|S(p)

n,j |2)1/2 with 0 < p < q0
(see (33)).

Proposition 5.1 Let 0 < p < q0 < 1/(1−2d). There exists some C > 0 whose value depends
only on p, d, q0 and f∗ such that for all n, j ≥ 1

‖S(p)
n,j‖2 ≤ C n−min(1−2δ(q0−p),1/2) γ

2δ(q0)+2K
j . (49)

Proof. Let C,C1, · · · be positive constants that may change from line to line. Set r =

q0 − p ≥ 1. We perform the change of variable y = nγjξ in the integral expression of S
(p)
n,j

given by (42) and deduce that

E

∣∣∣S(p)
n,j

∣∣∣
2

=
1

(nγj)2r

∫

R2r

∣∣∣Dn ◦ Σ2r

(y
n

)∣∣∣
2
(

2r∏

i=1

(f1(−π,π))(
yi
nγj

)

) ∣∣∣∣κ̂
(p)
j ◦Σr,r

(
y

nγj

)∣∣∣∣
2

d2ry .

We now use the expression of f given by (2), the boundedness of f∗, the bound of Dirichlet

kernel given by Lemma 8.1 and the bound of κ̂
(p)
j given by Lemma 7.1. Hence one deduces

that there exists some C1 > 1 depending only on p, d such that

E

∣∣∣S(p)
n,j

∣∣∣
2
≤ C1γ

−2r(1−2d)
j γ

4(K+δ(p))
j In,j = C1γ

−2+4δ(r)+4δ(p)
j γ4Kj In,j , (50)

where

In,j =

∫

(−nγjπ,nγjπ)2r

n−2r(1−2d)
∣∣∣g ◦ Σr,r(

y
nγj

)
∣∣∣
2
d2ry

(1 + n |{Σ2r(n−1y)}|)2∏2r
i=1 |yi|2d

,

with

g(z1, z2) =
1

(1 + γj |{z1}|)δ(p)(1 + γj |{z2}|)δ(p)
.
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We now bound the integral In,j. To this end, perform the successive change of variables

u1 =
y1 + · · ·+ yr

n
, · · · , ur =

yr
n
, v1 =

yr+1 + · · · + y2r
n

, · · · , vr =
y2r
n

.

so that

yi = n(ui − ui+1) for 1 ≤ i ≤ r − 1, yr = nur,

yi = n(vi−r − vi−r+1) for r + 1 ≤ i ≤ 2r − 1, y2r = nur .

In addition, observe that for any m ∈ Z+ \ {0}, (y1, · · · , ym) ∈ (−nγjπ, nγjπ)m , implies that
y1 + · · · + ym ∈ (−m(nγj)π,m(nγj)π). Hence, there exists some constant C depending only
on r, d such that

In,j ≤ C

∫ γjπr

−γjπr

∫ γjπr

−γjπr

Jr,γjπ(u1; 2d1r)Jr,γjπ(v1; 2d1r)du1dv1

(1 + n |{u1 + v1}|)2(1 + γj

∣∣∣{u1
γj
}
∣∣∣)2δ(p)(1 + γj

∣∣∣{v1
γj
}
∣∣∣)2δ(p)

,

where we used the definition of Jm,a(s;β) in Lemma 8.4 with the notation 1r for the r-
dimensional vector with all entries equal to 1, that is, we set m = r, a = γjπ, β1 = · · · =
βm = 2d in (95). We now apply Lemma 8.4. Since m = r < 1/(1 − 2d), we are in Case (i)
and we get that there exists some C > 0 depending only on r, d such that

Jr,γjπ(s; 2d1r) ≤ C|s|−2δ(r) for all s ∈ R .

Then there exists some constant C2 > 1 depending only on r, d such that

In,j ≤ C2

∫ γjπr

u1=−γjπr

∫ γjπr

v1=−γjπr

|u1|−2δ(r)|v1|−2δ(r)du1 dv1

(1 + n |{u1 + v1}|)2
(
1 + γj

∣∣∣{u1
γj
}
∣∣∣
)2δ(p)

·
(
1 + γj

∣∣∣{v1
γj
}
∣∣∣
)2δ(p) .

Now use the inequality |{x}| ≤ |x| valid on x ∈ R. Since δ(r) ≥ 0,

In,j ≤ C2

∫ γjπr

u1=−γjπr

∫ γjπr

v1=−γjπr

|γj{u1
γj
}|−2δ(r)|γj{v1

γj
}|−2δ(r)du1dv1

(1 + n |{u1 + v1}|)2
(
1 + γj

∣∣∣{u1
γj
}
∣∣∣
)2δ(p)

·
(
1 + γj

∣∣∣{v1
γj
}
∣∣∣
)2δ(p) .

By 2π–periodicity of x 7→ {x}, the integrand is (2γjπ)-periodic with respect to both variables
u1 and v1 and we get that

In,j ≤ C3

∫ v1=γjπ

u1=−γjπ

∫ γjπ

−γjπ

|u1|−2δ(r)|v1|−2δ(r)du1 dv1

(1 + n |{u1 + v1}|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)
.

To deal with the fractional parts, we now partition (−γjπ, γjπ)2 using the following domains

∆
(s)
j = {(u1, v1) ∈ (−γjπ, γjπ)2, |u1 + v1 − 2πs| ≤ π} ,

with s ∈ {−γj , · · · , γj}, so that In,j = A+ 2B with

A =

∫

∆
(0)
j

|u1|−2δ(r)|v1|−2δ(r)du1 dv1

(1 + n |u1 + v1|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)
,
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and

B =

γj∑

s=1

∫

∆
(s)
j

|u1|−2δ(r)|v1|−2δ(r)du1 dv1

(1 + n |u1 + v1 − 2πs|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)
.

Let us now bound separately A and B. To bound A, we distinguish two cases : 4δ(r) > 1
and 4δ(r) ≤ 1. In the first case, observe that (1 + |u|)2δ(p) ≥ 1 holds on R and perform the
change of variables u′1 = nu1 and v′1 = nv1. Then

A ≤ n−2+4δ(r)

∫

R2

|u′1|−2δ(r)|v′1|−2δ(r)du′1 dv
′
1

(1 + |u′1 + v′1|)2
≤ Cn−2+4δ(r) , (51)

since the integral is bounded. This follows from Lemma 8.4 of Clausel et al. [2010] applied
with M1 = 2, M2 = 0, q = 2, a = 0, β1 = β2 = 2δ(r).

In the case where 4δ(r) ≤ 1, setting t1 = u1 + v1, we get that

A ≤
∫ −π

−π

dt1
(1 + n|t1|)2

[∫ γjπ

−γjπ

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1

(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

]
.

We now split the integral in brackets into two terms

∫

|v1|≤2|t1|

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1

(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)
+

∫

2|t1|≤|v1|≤γjπ

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1

(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

Consider the first integral. Since 4δ(r) ≤ 1, Lemma 8.4 (case (ii) or (iv)) applied with m = 2,
a = 2|t1|, s1 = t1, β1 = β2 = 2δ(r) then implies that for some C > 0 depending on r, d

∫

|v1|≤2|t1|

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

≤
∫

|v1|≤2|t1|
|t1 − v1|−2δ(r)|v1|−2δ(r)dv1

≤ C|t1|1−4δ(r) .

Now consider the second integral. Note that |v1| ≥ 2|t1| implies |v1− t1| ≥ |v1|− |t1| ≥ |v1|/2.
We get that

∫

2|t1|≤|v1|≤γjπ

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

≤ C

∫ γjπ

−γjπ

|v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |v1|)2δ(p)(1 + |v1|)2δ(p)

≤ C

∫ γjπ

−γjπ

|v1|−4δ(r)dv1
(1 + |v1|)4δ(p)

= O(1) ,

where we used that 4(δ(r) + δ(p)) = 4δ(q0) + 2 > 2 and that, for any β > 0 and β′ < 1,

∫ a

−a

|x|−β′

(1 + |x|)β dx = O(amax(1−β′−β,0)| log(a)|ε(β′+β)) when a→ +∞, (52)

Hence, if 4δ(r) ≤ 1

A ≤ C

(∫ π

−π

dt1
(1 + n|t1|)2

)
≤ Cn−1 . (53)
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To sum up Equations (51) and (53), we can write

A ≤ Cn−min(2−4δ(r),1) . (54)

To bound B observe that, on R2, if |u1| ≤ |u1 + v1|/2 then

|v1| = |(u1 + v1)− u1| ≥ |u1 + v1| − |u1| ≥ |u1 + v1|/2 .

Hence either |u1| ≥ |u1 + v1|/2 or |v1| ≥ |u1 + v1|/2. Set

∆
(s,1)
j = {(u1, v1) ∈ ∆

(s)
j , |u1| ≥ |u1 + v1|/2} ,

and its symmetric set

∆
(s,2)
j = {(u1, v1) ∈ ∆

(s)
j , |v1| ≥ |u1 + v1|/2} .

Then, since δ(r), δ(p) > 0, for any s ∈ {−γj , · · · ,−1, 1, · · · , γj},

B(s,1) =

∫

∆
(s,1)
j

|u1|−2δ(r)|v1|−2δ(r)du1 dv1

(1 + n |{u1 + v1}|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)

≤ C

∫

∆
(s,1)
j

|u1|−2(δ(r)+δ(p)) |v1|−2δ(r)du1 dv1

(1 + n |{u1 + v1}|)2(1 + |v1|)2δ(p)

≤ C

∫

∆
(s,1)
j

|u1 + v1|−2(δ(r)+δ(p)) |v1|−2δ(r)du1 dv1
(1 + n |{u1 + v1}|)2(1 + |v1|)2δ(p)

.

Setting t1 = n(u1 + v1), we get that

B(s,1) ≤ Cn−1+2δ(r)+2δ(p)

(∫ 2πns+πn

t1=2πns−πn

|t1|−2δ(r)−2δ(p)dt1
(1 + |t1 − 2πns|)2

)(∫ γjπ

−γjπ

|v1|−2δ(r)dv1

(1 + |v1|)2δ(p)

)

Set w1 = t1 − 2πns. Since s 6= 0, we have

B(s,1) ≤ Cn−1+2δ(r)+2δ(p)(n(2|s|−1))−2δ(r)−2δ(p)

(∫

R

(1 + |w1|)−2dw1

)(∫ γjπ

−γjπ

|v1|−2δ(r)dv1
(1 + |v1|)2δ(p)

)
,

and the same bound holds on B(s,2) by symmetry. Hence Then

B =

γj∑

s=1

(B(s,1) +B(s,2)) ≤ Cn−1




γj∑

|s|=1

(2|s| − 1)−2δ(r)−2δ(p)



(∫ γjπ

−γjπ

|v1|−2δ(r)dv1

(1 + |v1|)2δ(p)

)
. (55)

Using 2δ(p) + 2δ(r) = δ(q0) + 1 > 1 with (52), we deduce from (55) that B = O(n−1) and,
with (54), In,j = A + B = O(n−min(2−4δ(r),1)). With (50) and δ(p) + δ(r) = δ(q0) + 1/2, we
obtain (49). �
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5.2 The case p = 0

Here the situation is different from the previous case p 6= 0 since the kernel κ̂
(p)
j involved in

the definition of S
(p)
n,j has a different expression when p = 0 and vanishes when ξ1 = 0 or

ξ2 = 0. It implies that the bound in Proposition 5.2 involves n−1/2 instead of n−1+δ(q0) as
could be expected from the case p > 0 in Proposition 5.1. Further, an additional assumption
on the moments of the wavelet is required which is consistent with the results proved in the
Gaussian case in Moulines et al. [2007] (corresponding to q0 = 1) where M is assumed to be
greater than K + d.

Proposition 5.2 Assume that M ≥ K + δ(q0). Then there exists some C > 1 whose values
depend only on q0, d such that for any n, j

‖S(0)
n,j‖L2(Ω) = E(|S(0)

n,j|2)1/2 ≤ C n−1/2γ
2δ(q0)+2K
j . (56)

Proof. We denote by C a positive constant that may change at each appearance, but whose

value does neither depend on n nor j. Since p = 0, κ̂
(0)
j = ĥ

(K)⊗2
j by (39). Then, setting

y = (nγj)
−1ξ in (42), we get

E

∣∣∣S(0)
n,j

∣∣∣
2

(57)

=
1

(nγj)2q0

∫

R2q0

∣∣∣Dn ◦Σ2q0(
y

n
)
∣∣∣
2
(f1(−π,π))

⊗(2q0)(
y

nγj
)

∣∣∣∣ĥ
(K)⊗2
j ◦Σq0,q0(

y

nγj
)

∣∣∣∣
2

d2q0y .

We now use the bound of the Dirichlet kernel given by Lemma 8.1, the definition of f given

by Equation (2) with the boundedness of f∗, the bound of ĥ
(K)
j given by Equation (19). Then

we deduce that

E[|S(0)
n,j |2] ≤ C γ

−2q0(1−2d)
j γ

2(2K+1)
j In,j = Cγ

4(δ(q0)+K)
j In,j , (58)

where δ(·) is defined by (5) and where for any j, n

In,j = n−2q0(1−2d)

∫

(−nγjπ,nγjπ)2q0
g ◦ Σq0,q0(

y

n
)

(
2q0∏

i=1

|yi|−2d

)
dy1 · · · dy2q0 ,

with, for all (ξ1, ξ2) ∈ R2,

g(ξ1, ξ2) = (1 + |n{ξ1 + ξ2}|)−2 |γj{ξ1/γj}|2(M−K) |γj{ξ2/γj}|2(M−K)

[(1 + |γj{ξ1/γj}|)(1 + |γj{ξ2/γj}|)]2(M+α)
. (59)

We now bound the integral In,j. Observe that for any y = (y1, · · · , y2q0) ∈ (−nγjπ, nγjπ)2q0

|yi + · · ·+ yq0 | ≤ nγj(q0 − i+ 1)π and |yq0+i + · · · + y2q0 | ≤ nγj(q0 − i+ 1)π .

Thereafter, we set

u1 =
y1 + · · ·+ yq0

n
, · · · , uq0 =

yq0
n
, v1 =

yq0+1 + · · · + y2q0
n

, · · · , vq0 =
y2q0
n

.
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Then

In,j ≤ c0

∫ q0γjπ

u1=−q0γjπ

∫ q0γjπ

v1=−q0γjπ
g(u1, v1) Jq0,γjπ(u1; 2d1q0)Jq0,γjπ(v1; 2d1q0)du1dv1 ,

where we used the definition of Jm,a(s;β) in Lemma 8.4 with the notation 1q0 for the q0-
dimensional vector with all entries equal to 1, that is, we set m = q0, a = γjπ, β1 = · · · =
βm = 2d in (95). We now apply Lemma 8.4. Since q0 < 1/(1− 2d), we are in Case (i) of and
we obtain

Jq0,γjπ(z; 2d1q0) ≤ C |z|−2δ(m) , z ∈ R ,

for some constant C > 0. This bound with the inequality |{u}| ≤ |u| and the expression of g
given by (59) yields

In,j ≤ C

∫ q0γjπ

−q0γjπ

∫ q0γjπ

−q0γjπ

|γj{u1/γj}|2(M−K−δ(q0)) |γj{v1/γj}|2(M−K−δ(q0)) du1dv1

(1 + n|{u1 + v1}|)2 [(1 + |γj{u1/γj}|)(1 + |γj{v1/γj}|)]2(M+α)
.

By 2π–periodicity of u 7→ {u}, we observe that the integrand is (2πγj)-periodic with respect
to both variables u1 and v1. Thus the integral on (−q0γjπ, q0γjπ)2 equals q20 times the integral
on (−γjπ, γjπ)2. We get that

In,j ≤ C

∫ γjπ

u1=−γjπ

∫ γjπ

v1=−γjπ

|u1|2(M−K−δ(q0)) |v1|2(M−K−δ(q0)) du1dv1

(1 + n|{u1 + v1}|)2 (1 + |u1|)2(M+α) (1 + |v1|)2(M+α)
.

By assumption 2(M −K − δ(q0)) > 0, then for any t ∈ R,

|t|2(M−K−δ(q0)) ≤ (1 + |t|)2(M−K−δ(q0)) ≤ (1 + |t|)2(M−K)) .

It implies that

In,j ≤ C

∫ γjπ

u1=−γjπ

∫ γjπ

v1=−γjπ

du1dv1
(1 + n|{u1 + v1}|)2(1 + |u1|)2(K+α)(1 + |v1|)2(K+α)

.

We now apply Lemma 8.5 with

S = 2(K + α), β1 = β2 = 0 .

By assumptions (β1, β2) ∈ [0, 1)2 and S > 1. Then In,j ≤ C n−1 and the conclusion follows
from (58). �

6 The leading term of the scalogram and of its asymptotic

behavior

Suppose q0 ≥ 2. We will show that the leading term of Sn,j is S
(q0−1)
n,j defined in (34). It is an

element of the chaos of order 2q0 − 2(q0 − 1) = 2 and after renormalization it will converge

to a Rosenblatt random variable. We first study the asymptotic behavior of Sn,j − S
(q0−1)
n,j

which is a sum of random variables in chaoses 4,6 up to 2q0. We actually show in the next

result that, under the normalization of S
(q0−1)
n,j , this term is negligible.
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Corollary 6.1 Assume q0 ≥ 2 and M ≥ K + δ(q0). Then, as j, n → ∞,

n1−2dγ
−2(δ(q0)+K)
j




q0−2∑

p=0

p!

(
q0
p

)2

‖S(p)
n,j‖2


→ 0 , (60)

Proof. The limit (60) is a direct consequence of Propositions 5.1 and 5.2, observing that
1− 2d = 1− 2δ(1) < 1− 2δ(q0 − p) for all p = 1, 2, . . . , q0 − 2 and that δ(q0) > 0 and q0 ≥ 2
imply 1− 2d < 1/2. �

We consider the limit in distribution of the corresponding term n1−2dγ
−2(δ(q0)+K)
j S

(q0−1)
n,j .

With Corollary 6.1, this will provide the proof of Theorem 3.1 in the case q0 ≥ 2. However,

to cover the m-dimensional case with m ≥ 2, we need to define a multivariate S
(p)
n,j that will

be denoted by S
(p)
n,j. Let 0 < p < q0. Define a Cm–valued function κ̂

(p)
j by applying (38)

component-wise with hj replaced by hℓ,j , ℓ = 1, . . . ,m. Define a Cm–valued function gp

by (35) with κ̂
(p)
j replaced by κ̂

(p)
j . Finally define S

(p)
n,j as a m-dimensional random vector

defined by (34) with gp replaced by gp.

Proposition 6.1 Suppose that Assumption A holds with 2 ≤ q0 < 1/(1 − 2d) and M ≥
K + δ(q0 − 1). Then, for any diverging sequence (nj), as j → ∞, we have

n1−2d
j γ

−2(K+δ(q0))
j S

(q0−1)
nj ,j

L−→ f∗(0)q0 Lq0−1 Zd(1) . (61)

where Zd(1) and Lq0−1 are the same as in Theorem 3.1.

Proof. Using (42) component-wise with p = q0− 1, observing that 2q0− 2p = 2 and making
the change of variable y = nγjξ in the multiple stochastic integral, we get

S
(q0−1)
n,j = Î2

(
Dn ◦ Σ2(γj × ·)× [

√
f1(−π,π)]

⊗2 × κ̂
(q0−1)
j

)

d
=

1

nγj
Î2

(
Dn ◦Σ2

(
n−1 × ·

)
× 1⊗2

(−γjπ,γjπ)

(
n−1 × ·

)
× fj

)
, (62)

where, for all ξ ∈ R2,

fj(nγjξ) =
√
f
⊗2

(ξ)× κ̂
(q0−1)
j (ξ) . (63)

Here
d
= means that the two vectors have same distributions for all n, j ≥ 1. We will use

Lemma 8.1 which involves fractional parts. Let us express 1⊗2
(−γjπ,γjπ)

as a sum of indicator

functions on the following pairwise disjoint domains,

Γ
(s)
j = {t = (t1, t2) ∈ (−γjπ, γjπ)2, |t1 + t2 − 2πs| < π}, s ∈ Z . (64)

Hence we obtain

S
(q0−1)
n,j

d
=

1

nγj

∑

s∈Z

I
(s)
n,j . (65)

I
(s)
n,j = Î2

(
Dn ◦ Σ2

(
n−1 × ·

)
× 1

Γ
(s)
j

(
n−1 × ·

)
× fj

)
. (66)

Proposition 6.1 follows from the following three convergence results, valid for all fixed m ∈ Z

as n, j → ∞.
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(a) If s = 0, then

(nγj)
−2dγ

−2(K+δ(q0−1))
j I

(0)
n,j

L2(Ω)−→ (f∗(0))q0 Lq0−1 Zd(1) . (67)

(b) We have, as j, n→ ∞,

sup
s 6=0

E

[
(nγj)

−4dγ
−4(K+δ(q0−1))
j

∣∣∣I(s)n,j

∣∣∣
2
]
→ 0 . (68)

(c) We have, as j, n→ ∞,

∑

s 6∈γjZ

E

[
(nγj)

−4dγ
−4(K+δ(p))
j

∣∣∣I(s)n,j

∣∣∣
2
]
→ 0 . (69)

To show that this is sufficient to prove the proposition, observe that, for any t = (t1, t2) ∈ Γ
(s)
j ,

we have

2π|s| − π < 2π|s| − |t1 + t2 − 2πs| ≤ |t1 + t2| < 2γjπ .

Hence the domain Γ
(s)
j is empty if |s| > γj + 1/2 and the number of s such that s ∈ γjZ and

Γs
j is non-empty is at most 3. Thus (68) and (69) imply

(nγj)
−2dγ

−2(K+δ(q0−1))
j

∑

s 6=0

I
(s)
n,j

L2(Ω)−→ 0 .

Observe also that the normalizing factor in the left-hand side of (61) can be written as

n1−2dγ
−2(K+δ(q0))
j = (nγj)

(
(nγj)

−2dγ
−2(K+δ(q0−1))
j

)
,

by using the definition of δ in (5). The last two displays, (65) and (67) yield (61).

It only remains to prove (67), (68) and (69).

a) We first show (67). Since I
(0)
n,j and Zd(1) are defined as stochastic integrals of order 2,

(67) is equivalent to the L2(R2) convergence of the normalized corresponding kernels. These
kernels are given in (66) and (24) respectively. We show the latter by a dominated convergence
argument. Observe that, as n→ ∞, Dn(θ/n) → (eiθ − 1)/(iθ) by (37), for all y ∈ R2,

Dn

(
n−1(y1 + y2)

)
→ exp(i(y1 + y2))− 1

(i(y1 + y2))
.

By (1), we have, as (nγj) → ∞, for all y ∈ R2,

√
f
⊗2

(y/(nγj)) ∼ f∗(0) (nγj)
2d |y1|−d|y2|−d .

Now applying Lemma 7.2 to the m entries of κ̂
(p)
j with p = q0 − 1, we get that, as n, j → ∞,

for all y ∈ R2,

γ
(q0−1)(1−2d)−(2K+1)
j κ̂

(q0−1)
j (y/(nγj)) → (f∗(0))q0−1 Lq0−1 .
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The last three convergences and 2δ(q0−1) = 1−(q0−1)(1−2d) yield the pointwise convergence
of the normalized kernels defining the stochastic integrals appearing in the left-hand side
of (67) towards the kernel of the right-hand side.

It remains to bound these kernels by an L2(R2) function not depending on j, n. We may
take m = 1 without loss of generality for this purpose, since component-wise bounds are

sufficient. If y/n ∈ Γ
(0)
j , we have, by Lemma 8.1,

|Dn((y1 + y2)/n)| ≤ C (1 + |y1 + y2|)−1 , (70)

for some constant C > 0. By (1), since f∗ is bounded, we have, for all y = (y1, y2) ∈
(−nγjπ, nγjπ) ∣∣∣(nγj)−2d

√
f
⊗2

(y/(nγj))
∣∣∣ ≤ C |y1|−d |y2|−d , (71)

where C is a constant. Since q0 − 1 < 1/(1− 2d), Lemma 7.1 implies that, for all ζ ∈ R2 and
some constant C, ∣∣∣γ−2(K+δ(q0−1))

j κ̂
(q0−1)
j (ζ)

∣∣∣ ≤ C . (72)

The bounds (70), (71) and (72) imply that (nγj)
−2dγ

−2(K+δ(q0−1))
j I

(0)
n,j = Î2(g) with

|g(y)|2 ≤ C(1 + |y1 + y2|)−2 |y1|−2d|y2|−2d, y = (y1, y2) ∈ R
2 ,

for some positive constant C. Since we assumed 2 < 1/(1 − 2d). Then, applying Lemma 8.3
with M1 = 2, q = 2, and a = 0, we obtain that this function is integrable and the conver-
gence (67) follows.

b) Let us now prove (68). Again we may take m = 1 without loss of generality since the
bound can be applied component-wise to derive the casem ≥ 2. Observe that the bounds (71)

and (72) can be used for y/n ∈ Γ
(s)
j , while the bound (70) becomes

|Dn((y1 + y2)/n)|2 ≤ C (1 + |y1 + y2 − 2πns|)−2 , (73)

Hence in this case, we obtain that (nγj)
−2dγ

−2(K+δ(q0−1))
j I

(s)
n,j = Î2(g) with

|g(y)|2 ≤ C(1 + |y1 + y2 − 2πns|)−2 |y1|−2d |y2|−2d, y = (y1, y2) ∈ R
2 , (74)

for some positive constant C. Using the assumption 2 < 1/(1− 2d), from Lemma 8.3 applied
with q = 2, a = 2πns and M1 = 2, we get (68).

c) Finally we prove (69) with m = 1. We need to further partition Γs
j into

Γ
(s,σ)
j = {t ∈ Γs

j , t/γj − 2πσ ∈ (−π, π)2}, σ ∈ Z
2 . (75)

Note that for all t = (t1, t2) ∈ Γ
(s,σ)
j , we have, for any i = 1, 2,

|2πσi| ≤ |ti/γj − 2πσi|+ |ti/γj | < 2π .

Hence Γ
(s,σ)
j = ∅ for all σ out of the integer rectangle R = {−1, 0, 1}2 . Then we obtain

(nγj)
−2dγ

−2(K+δ(q0−1))
j I

(s)
n,j =

∑

σ∈R

Î2(g
(s)
σ ) ,
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where, for all y ∈ R2,

g(s)σ (y) = (nγj)
−2dγ

−2(K+δ(q0−1))
j Dn ◦Σ2(y/n)× 1

Γ
(s,σ)
j

(y/n)× fj(y) .

Since R is a finite set, to obtain the limit (69), it is sufficient to show that, for any fixed
σ ∈ R, as j, n → ∞, ∑

s 6∈γjZ

∫ ∣∣∣g(s)σ (y)
∣∣∣
2
d2y → 0 . (76)

For ζ ∈ 2πσ + (−π, π)2, we use a sharper bound than (72), namely, by Lemma 7.1,

∣∣∣γ−2(K+δ(q0−1))
j κ̂

(q0−1)
j (ζ)

∣∣∣
2
≤ C k⊗2

j (ζ − 2πσ) where kj(u) = (1 + γj|u|)−2δ(q0−1) . (77)

With (71) and (73), it follows that

∣∣∣g(s)σ (y)
∣∣∣
2
≤ C

k⊗2
j (y/(nγj)− 2πσ)

(1 + |y1 + y2 − 2πns|)2 |y1|−2d |y2|−2d, y = (y1, y2) ∈ R
2 . (78)

Let us set w = (w1, w2) with w1 = y1/(nγj) − 2πσ1 and w2 = y2/(nγj) − 2πσ2. Using the

bound (78) and that y/n ∈ Γ
(s,σ)
j implies w ∈ ∆

(s,σ)
j with

∆
(s,σ)
j = {(w1, w2) ∈ (−π, π)2, |γj(w1 + w2)− 2π(s − γj(σ1 + σ2))| < π} ,

we get

∫ ∣∣∣g(s)σ (y)
∣∣∣
2
d2y ≤ C(nγj)

2(1−2d)

∫

∆
(s,σ)
j

k⊗2
j (w) |w1 + 2πσ1|−2d|w2 + 2πσ2|−2d

(1 + n|γj(w1 + w2)− 2π(s − γj(σ1 + σ2))|)2
d2w ,

Since |wi ± 2π| > π > |wi| for w ∈ ∆
(s,σ)
j , we have for σ ∈ R,

∫ ∣∣∣g(s)σ (y)
∣∣∣
2
d2y ≤ C(nγj)

2(1−2d)

∫

∆
(s,σ)
j

k⊗2
j (w) |w1|−2d|w2|−2d

(1 + n|γj(w1 + w2)− 2π(s − γj(σ1 + σ2))|)2
d2w .

(79)
We shall apply Lemma 8.3 after having conveniently bounded kj in the numerator of the
previous ratio. Let β < 1 to be set later arbitrarily close to 1. Since 2δ(q0−1) ≥ β−2d+2δ(q0),
we have

kj(u) = (1 + γj |u|)−2δ(q0−1)

≤ (1 + γj |u|)2d−β(1 + γj |u|)−2δ(q0) .

Observe that, for all w ∈ ∆
(s,σ)
j we have

γj(|w1| ∨ |w2|) ≥ γj |(w1 + w2)/2| ≥ π(|s − γj(σ1 + σ2)| − 1/2) ≥ π|s− γj(σ1 + σ2)|/2 .

In the last inequality, we used that s 6∈ γjZ and that s, γj, σ1 and σ2 are integers so that
|s− γj(σ1 + σ2)| ≥ 1.
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Using 0 < q0 < 1/(1 − 2d), we have 2δ(q0) > 0, and, choosing β close enough to 1, we

have β − 2d > 0. Hence, the last two displays yield, for all w ∈ ∆
(s,σ)
j with s 6∈ γjZ,

k⊗2
j (w) ≤ |γjw1|2d−β |γjw2|2d−β(1 + π|s− γj(σ1 + σ2)|/2)−2δ(q0) . (80)

Inserting this bound in (79) and setting t = nγjw, we obtain

∫ ∣∣∣g(s)σ (y)
∣∣∣
2
d2y

≤ C
n−4d+2β

|s− γj(σ1 + σ2)|2δ(q0)
∫

R2

|t1t2|−β

(1 + |t1 + t2 − 2πn(s − γj(σ1 + σ2))|)2
d2t

For β close enough to 1, we may apply Lemma 8.3 with q = 2, d = β/2, M1 = 2 and
a = 2πn(s− γj(σ1 + σ2)) to bound the previous integral. Using again that s 6∈ γjZ and that
s, γj, σ1 and σ2 are integers, we have |a| ≥ 2πn and thus 1+ |a| ≍ |a|. We get, for all s 6∈ γjZ

∫ ∣∣∣g(s)σ (y)
∣∣∣
2
d2y ≤ Cn1−4d |s− γj(σ1 + σ2)|1−2δ(q0)−2β ,

where C is some positive constant.
Now choose β close enough to 1 so that 2δ(q0) + 2β − 1 > 1. It follows that

∑

k 6=0

|k|1−2δ(q0)−2β <∞ .

Since our assumptions imply d > 1/4, the last two displays imply (76) and the proof is
finished. �

Proof of Theorem 3.1. We first prove the result in Case a. In this case q0 = 1 and thus
Hq0(Xt) = Xt. Let (v(s))s∈Z be the Fourier coefficients of

√
2πf , so that the convergence

√
2π f(λ) = v̂(λ) =

∑

s∈Z

v(s)e−iλs

holds in L2(−π, π). It follows that {Xt}t∈Z can be represented as

Xt =
∑

s∈Z

v(t− s)ξs, t ∈ Z ,

where {ξt}t∈Z is an i.i.d. sequence of standard Gaussian r.v.’s. Applying (17) with Hq0(Xt) =
Xt we obtain that

Wj,k = γd+K
j



Z1,j,k

...
Zm,j,k


 , (81)

where
Zℓ,j,k =

∑

t∈Z

vℓ,j(γjk − t)ξt

with
vℓ,j(u) = γ−d−K

j

∑

s∈Z

h
(K)
ℓ,j (u− s) v(s), u ∈ Z .
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Hence

v̂ℓ,j(λ) = γ−d−K
j ĥ

(K)
ℓ,j (λ)v̂(λ) = γ−d−K

j

√
2π f(λ) ĥ

(K)
ℓ,j (λ), λ ∈ (−π, π) .

Observe that (1), (12) and (18) imply, for some positive constant C,

|v̂ℓ,j(λ)| ≤ Cγ
1/2
j

|γjλ|M−(K+d)

(1 + γj|λ|)α+M
, λ ∈ (−π, π) .

On the other hand, (1), (14) and (18) imply

lim
j→+∞

γ
−1/2
j v̂ℓ,j(γ

−1
j λ)eiΦj(λ) =

√
f∗(0)|λ|−(K+d)ĥℓ,∞(λ), λ ∈ R, ℓ = 1, . . . ,m .

Thus, if M ≥ K + d, Assumption A implies Condition B in Roueff and Taqqu [2009a]
with N = m, δ = α + K + d, λi,j = λi,∞ = 0, Φi,j = Φj, v

∗
i,j = (2π)−1/2v̂i,j and

v∗i,∞(λ) = (2π)−1/2
√
f∗(0)|λ|−(K+d)ĥi,∞(λ) for i = 1, . . . , N and j ≥ 1. Moreover we may

apply Theorem 1 in Roueff and Taqqu [2009a] and obtain, as j → ∞,

n
−1/2
j

nj−1∑

k=0




Z2
1,j,k − E[Z2

1,j,k]
...

Z2
N,j,k − E[Z2

N,j,k]


 L−→ N (0,Γ) ,

where Γ is them×m covariance matrix defined by (26). Since, by (22) and (81), n
1/2
j γ

−2(d+K)
j Snj ,j

is the left-hand side of the last display, we get (25).
We now consider Case b. Applying the basic decomposition (31) to each entries of Sn,j,

Corollary 6.1 and Proposition 6.1 show that the leading term is obtained for p = q0 − 1.
Moreover the latter proposition specify the limit.

Remark 6.1 The result proved in Theorem 3.1 can be compared with the main result in
Chronopoulou et al. [2011]: the variations based on the increments of the Hermite process of
order q0 ≥ 2 converges, after suitable normalization, to a Rosenblatt random variables in the
second Wiener chaos.

7 Asymptotic behavior of the kernel κ̂
(p)
j

The following result provides a bound of κ̂
(p)
j defined in (38), in the case where p > 0. It is

used in the proof of Proposition 5.1.

Lemma 7.1 Suppose that Assumption A hold with m = 1 and M ≥ K, and let 0 < p <
1/(1 − 2d). Then there exists some C1 > 0 such that for all (ξ1, ξ2) ∈ R2 and j ≥ 0,

|κ̂(p)j (ξ1, ξ2)| ≤ C1

γ
2(δ(p)+K)
j

(1 + γj|{ξ1}|)δ(p)(1 + γj |{ξ2}|)δ(p)
. (82)

Proof. By (2π)-periodicity of κ̂
(p)
j (ξ1, ξ2) along both variables ξ1 and ξ2, we may take

ξ1, ξ2 ∈ [−π, π]. Set for all i ∈ {1, · · · , p},

µi = γj (λi + · · ·+ λp) ,
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in the integral (43). Then by (2) and (20), there exists a constant C independent of j such
that for all (ξ1, ξ2) ∈ [−π, π]2,

|κ̂(p)j (ξ1,−ξ2)| ≤ C‖f∗‖p∞γ2K+2δ(p)
j

∫ γjpπ

−γjpπ

Jp,γjπ(µ1; 2d)dµ1∏2
i=1 (1 + γj |{µ1/γj + ξi}|)K+α

,

where Jp,a is defined in Lemma 8.4. Applying Lemma 8.4 (β = 2d, a = γjπ), there exists
some constant C > 0 depending only on p, d such that for any µ1 ∈ R∗,

Jp,γjπ(µ1, 2d) ≤ C|µ1|−(p(1−2d)−1) = C|µ1|−2δ(p) . (83)

Hence there exists C1 > 0 such that, for all (ξ1, ξ2) ∈ [−π, π]2,

|κ̂(p)j (ξ1,−ξ2)| ≤ C1γ
2K+2δ(p)
j

∫ pγjπ

−pγjπ

|µ1|−2δ(p)dµ1∏2
i=1 (1 + γj |{µ1/γj + ξi}|)K+α

.

Using the Cauchy–Schwartz inequality yields

|κ̂(p)j (ξ1,−ξ2)| ≤ C1γ
2(K+δ(p))
j

2∏

i=1

(∫ pγjπ

−pγjπ

|µ1|−2δ(p)dµ1

(1 + |γj {µ1/γj + ξi}|)2(K+α)

)1/2

(84)

We now use that

∫ pγjπ

−pγjπ

|µ1|−2δ(p) dµ1

(1 + |γj {µ1/γj + ξ}|)2(K+α)
≤

∑

|s|<(p+1)/2

∫

I(s)

|µ1|−2δ(p) dµ1

(1 + |µ1 + γj(ξ − 2πs)|)2(K+α)
,

where I(s) denotes the interval −γjξ + 2πsγj + [−γjπ, γjπ]. Since we have here supposed
that δ(p) > 0, we may apply Lemma 8.3 with d = δ(p), q = 1, a = −γj(ξ − 2πs) and
M1 = 2(K + α). We get

∫ pγjπ

−pγjπ

|µ1|−2δ(p) dµ1

(1 + |γj {µ1/γj + ξ}|)2(K+α)
≤ C

∑

|s|<(p+1)/2

(1 + γj|ξ − 2πs|)−2δ(p) ,

for some positive constant C. Since |ξ| ≤ π, we have, for any non-zero integer s, |ξ − 2πs| ≥
(2|s| − 1)π ≥ π ≥ |ξ|. Hence all the terms in the last sum are at most equal to the term
corresponding to s = 0. This, with (84), yields (82). �

Next we derive the limit of κ̂
(p)
j , rescaled and normalized, as j → ∞. The result is used

in the proof of Proposition 6.1.

Lemma 7.2 Suppose that Assumption A hold with m = 1 and M ≥ K, and let 0 < p <
1/(1 − 2d). Let (zj,n)j,n≥1 be an array with values in R2. Let (nj) be a diverging sequence of
integers such that |zj,nj

| → 0 as j → ∞. Then, as j → ∞,

γ
p(1−2d)−(2K+1)
j κ̂

(p)
j (zj,n/γj) → (f∗(0))p Lp(ĥ∞) ,

where Lp(ĥ∞) is the finite positive constant defined by (28).
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Proof. From (15)and (28) withM ≥ K we get that |ĥ∞(λ)|/|λ|K ≤ (1+ |λ|)−α−K . The fact
that Lp(ĥ∞) < ∞ follows from Lemma 8.3 applied with a = 0, p = q and M1 = 2(α + K).
Setting ζ = γjλ in (43), we get

γ
p(1−2d)−(2K+1)
j κ̂

(p)
j (ξ) =

∫

(−γjπ,γjπ)p
f
(K,p)
j (ζ; ξ) dpζ, (85)

where, for all j ≥ 0, λ ∈ Rp and ξ = (ξ1, ξ2) ∈ R2,

f
(K,p)
j (γjλ; ξ) = γ

−2dp−(2K+1)
j f⊗p(λ) ĥ

(K)
j (Σp(λ) + ξ1)ĥ

(K)
j (Σp(λ)− ξ2) .

Using (1), (14), (18) and zj,n → 0, we have, as j, n → ∞,

f
(K,p)
j (ζ; zj,n/γj) → (f∗(0))p

|ĥ∞(ζ1 + · · ·+ ζp)|2
|ζ1 + · · · + ζp|2K

p∏

i=1

|ζi|−2d . (86)

It turns out, however, that f
(K,p)
j (ζ; zj,n/γj) cannot be uniformly bounded by an integrable

function over the whole integral domain (−γjπ, γjπ)p, but only on a specific subdomain, as
we will show below. By (1) and (20), setting mn = supj |zj,n|, we have, for some constant
C > 0,

∣∣∣f (K,p)
j (ζ; zj,n/γj)

∣∣∣ ≤ C

p∏

i=1

|ζi|−2d sup
|u|≤mn

(1 + |γj{(Σp(ζ) + u)/γj}|)−2(α+K) . (87)

The domains are defined using an integer s by taking ζ such that {(Σp(ζ)+u)/γj} = (Σp(ζ)+
u)/γj−2πs. In fact we will use smaller domains that do not depend on u ∈ [−mn,mn], namely,

Γ
(s)
j,n = {ζ ∈ (−γjπ, γjπ)p, −π + 2πs+mn/γj < Σp(ζ)/γj < π + 2πs −mn/γj} .

We note indeed that, for all ζ ∈ Γ
(s)
j,n and u ∈ [−mn,mn], {(Σp(ζ)+u)/γj} = (Σp(ζ)+u)/γj −

2πs. The following set completes the partition of (−γjπ, γjπ)p.

∆j,n = {ζ ∈ (−γjπ, γjπ)p : d (Σp(ζ)/γj , π + 2πZ) ≤ mn/γj} ,

where d(x,A) denotes the distance between a real x and the set A. We will prove below the
following facts.

(i) The following bounds hold for ζ ∈ Rp and n large enough,

∫

Γ
(0)
j,n

f
(K,p)
j (ζ; zj,n/γj) dζ → (f∗(0))p Lp . (88)

(ii) If |s| ≥ (p+ 1)/2, Γ
(s)
j,n is an empty set.

(iii) For all s 6= 0, as n, j → ∞,

∫

Γ
(s)
j,n

f
(K,p)
j (ζ; zj,n/γj) dζ → 0 . (89)
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(iv) As n, j → ∞, ∫

∆j,n

f
(K,p)
j (ζ; zj,n/γj) dζ → 0 . (90)

To conclude the proof, we show (i), (ii), (iii) and (iv) successively.

First consider (i). It follows from (87), the definition of Γ0
j,n and mn → 0 that1Γ0

j,n
(ζ)
∣∣∣f (K,p)

j (ζ; zj,n/γj)
∣∣∣ ≤ C

p∏

i=1

|ζi|−2d (1/2 + Σp(ζ))
−2(α+K) .

Observe that, by Lemma 8.2, and since α > 1/2, K ≥ 0 and p(1−2d) < 1, the right-hand side
of the last display is integrable. Then (88) follows from (86) and the dominated convergence
theorem.

Assertion (ii) follows from the definition of Γ
(s)
j,n.

We now prove (iii) and thus take s 6= 0. Using (87) and mn → 0, we get, for all ζ ∈ Γ
(s)
j,n

and n large enough,

∣∣∣f (K,p)
j (ζ; zj,n/γj)

∣∣∣ ≤ C

p∏

i=1

|ζi|−2d (1/2 + |Σp(ζ)− 2πsγj|)−2(α+K) .

The limit (89) then follows from Lemma 8.3 applied with q = p,M1 = 2(K+α) and a = 2πγjs.

Finally we prove Assertion (iv). In this case, we observe that (87) implies

|f (K,p)
j (ζ; zj,n/γj)| ≤ C

p∏

i=1

|ζi|−2d .

This bound and Lemma 8.2 yields

∫

∆j,n

f
(K,p)
j (ζ; zj,n/γj) dζ ≤ C

∫ pγjπ

−pγjπ
1d(t/γj ,π+2πZ)≤mn/γj dt = O(mn) .

Hence, we obtain (90) and the proof is achieved. �

8 Technical lemmas

Lemma 8.1 Define the Dirichlet kernel Dn as in (37). Then

sup
θ∈R

sup
n≥1

(1 + |n{θ/n}|) |Dn(θ/n)| <∞ . (91)

Proof. We observe that |eiλ − 1| ≥ 2|{λ}|/π. Hence, for all θ ∈ R,

|Dn(θ/n)| ≤
π

2

|eiθ − 1|
|n{θ/n}| =

π

2

|ein{θ/n} − 1|
|n{θ/n}| .

Now, using that |eiu − 1| ≤ 2|u|/(1 + |u|) on u ∈ R, we get (91). �
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Lemma 8.2 Let p be a positive integer and f : R → R+. Then, for any β ∈ Rq,

∫

Rq

f(y1 + · · ·+ yq)

q∏

i=1

|yi|βi dy1 · · · dyq = Γ×
∫

R

f(s)|s|q−1+β1+···+βqds , (92)

where, for all i ∈ {1, · · · , q}, Bi = βi + · · ·+ βq and

Γ =

q∏

i=2

(∫

R

|t|q−i+Bi |1− t|βi−1dt

)
.

(We note that Γ may be infinite in which case (92) holds with the convention ∞× 0 = 0).

Proof. This follows from Lemma 8.3 in Clausel et al. [2010]. �

Lemma 8.3 Let d ∈ (0, 1/2) and q be a positive integer such that q < 1/(1−2d). LetM1 > 1.
Set for any a ∈ R,

Jq(a;M1; d) =

∫

Rq

(1 + |Σq(ζ)− a|)−M1

q∏

i=1

|ζi|−2d dζ.

Then one has

sup
a∈R

(1 + |a|)1−q(1−2d)Jq(a;M1; d) <∞ . (93)

In particular,

Jq(0;M1; d) <∞,

and

Jq(a;M1; d) = O(|a|−(1−q(1−2d)) as a→ ∞ .

Proof. This follows from Lemma 8.4 of in Clausel et al. [2010]. �

Lemma 8.4 Define, for all a > 0 and β1 ∈ (0, 1),

J1,a(s1;β1) = |s1|−β1 , s1 ∈ R , (94)

and, for any integer m ≥ 2 and β = (β1, · · · , βm) ∈ (0, 1)m,

Jm,a(s1;β) =

∫ (m−1)a

s2=−(m−1)a
. . .

∫ a

sm=−a

m∏

i=2

|si−1− si|−βi−1 |sm|−βm dsm . . . ds2, s1 ∈ R . (95)

Then

(i) if β1 + · · ·+ βm > m− 1, one has

Cm(β) = sup
a>0

sup
s1∈R

(
|s1|−(m−1−(β1+···+βm))Jm,a(s1;β)

)
<∞ ,

27



(ii) if β1 + · · ·+ βm = m− 1, one has

Cm(β) = sup
a>0

sup
|s1|≤ma

(
1

1 + log(ma/|s1|)
Jm,a(s1;β)

)
<∞ ,

(iii) if there exists q ∈ {2, . . . ,m} such that βq + · · ·+ βm = m− q, one has

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(q−1−(β1+···+βq−1))

1 + log(ma/|s1|)
Jm,a(s1;β)

)
<∞ ,

(iv) if β1 + · · ·+ βm < m− 1 and for all q ∈ {1, . . . ,m− 1}, we have βq + · · ·+ βm 6= m− q,
one has

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(m−1−(β1+···+βm))Jm,a(s1;β)

)
<∞ .

Remark 8.1 We observe that Cases (ii),(iii) and (iv) can be put together as the following
formula, valid for all β ∈ (0, 1)m such that β1 + · · ·+ βm ≤ m− 1,

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(q−1−(β1+···+βq−1))

{1 + log(ma/|s1|)}ε
Jm,a(s1;β)

)
<∞ , (96)

where ε = 1 if there exists q ∈ {1, . . . ,m} such that βq + · · · + βm = m − q, and ε = 0
otherwise. We may also include case (i) as follows,

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(m−1−(β1+···+βm))+ |s1|(m−1−(β1+···+βm))−

{1 + log(ma/|s1|)}ε
Jm,a(s1;β)

)
<∞ , (97)

where ε is as above, and a+ = max(a, 0) and a− = max(−a, 0) denote the positive and negative
parts of a, respectively.

Proof. Observe first that for all m ≥ 1,

Jm,a(s1;β) =

∫ (m−1)a

s2=−(m−1)a
|s2 − s1|−β1 Jm−1,a(s2;β

′) ds2 , (98)

where β′ = (β2, . . . , βm). The bounds Cm(β) in the different cases will follow by induction on
m.

Let us first prove the result for m = 1 and m = 2. If m = 1, β = β1 ∈ (0, 1) only satisfies
the condition of Case (i) and, since J1,a is given by (94), the result holds for m = 1. Assume
now that m = 2 and s1 6= 0 and set s2 = v|s1|. Then

J2,a(s1;β) = |s1|1−(β1+β2)

∫ a/|s1|

−a/|s1|

dv

|1− v|β1 |v|β2
. (99)

In the case β1 + β2 > 1, we are in Case (i). Since
∫
R

dv
|1−v|β1 |v|β2

is finite, the required upper

bound holds. If β1 + β2 ≤ 1, we are either in Case (ii) or (iv) and the result follows from the
following bounds valid for some constant c depending only on β, if β1 + β2 < 1 and x ≥ 1/2,

∫ x

−x

dv

|1− v|β1 |v|β2
≤ cx1−(β1+β2) ,
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and, if β1 + β2 = 1 and x ≥ 1/2,
∫ x

−x

dv

|1− v|β1 |v|β2
≤ C(1 + log(2x)) .

This prove the result for m = 2 because x = a/|s1| ≥ 1/2.
Let us now assume that the result holds for some positive integer m− 1 and prove it for

m. We consider two different cases.

1. If β satisfies the conditions of Case (i), Case (ii), or Case (iv) then β′ satisfies the
conditions of Case (i) or (iv). Then by (98) and the induction assumption,

Jm,a(s1;β) ≤ Cm−1(β
′)a[m−2−Σm−1(β′)]+

∫ (m−1)a

−(m−1)a
|s2−s1|−β1 |s2|−[Σm−1(β′)−(m−2))]+ds2 ,

where Σm−1(β
′) = β2 + · · ·+ βm and [x]+ = max(x, 0). If Σm−1(β

′) < m− 2 (so that β
satisfies (iv)), the conclusion follows from the following bound valid for some constant
c depending only on β and all x ≥ |s1|/2,

∫ x

−x
|s2 − s1|−β1ds2 = |s1|1−β1

∫ x/|s1|

−x/|s1|
|u− 1|−β1du ≤ cx1−β1 .

Now if Σm−1(β
′) > m− 2, we observe that

∫ (m−1)a

−(m−1)a
|s2−s1|−β1 |s2|−[β2+···+βm−(m−2)]ds2 = J2,(m−1)a(s1;β1, β2+· · ·+βm−(m−2)) .

The upper bound of Jm,a(s1;β) then follows from the case m = 2.

2. If β satisfies the condition of Case (iii), then β′ either satisfies the conditions of Case (ii)
or (iii). The proof is exactly similar to this just above up to a logarithmic correction.

�

Lemma 8.5 Let S > 1 and (β1, β2) ∈ [0, 1)2 such that β1+β2 < 1, and set gi(t) = |t|−βi(1+
|t|)βi−S. Then

sup
ν≥0

(
ν

∫

R2

(1 + ν|{w1 + w2}|)−2g1(w1)g2(w2) dw

)
<∞ . (100)

Proof. Denote by J(ν) the quantity in parentheses in (100). We denote here by C a positive
constant that may change from line to line, but whose value does not depend on ν. Setting
u = w1 + w2 in the integral with respect to w1 and then integrating with respect to w2,
Lemma 8.1 in Clausel et al. [2010] yields

J(ν) ≤ Cν

∫

u∈R
(1 + ν|{u}|)−2 (1 + |u|)−Sdu .

Since the integral is bounded independently of ν, J is bounded on compact subsets of [0,∞),
hence we may consider ν ≥ 2 in the remainder of the proof. We shall use the bound 1 + x ≥
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max(1, x) for x ≥ 0. Splitting the integral of the last display on the two domains defined by
the position of |{u}| with respect to ν−1, we get J(ν) ≤ C(J1(ν) + J2(ν)), with

J1(ν) = ν

∫

|{u}|≤ν−1

(1 + |u|)−S du ,

and

J2(ν) = ν−1

∫

|{u}|≥ν−1

|{u}|−2 (1 + |u|)−S du .

We have

J1(ν) = ν
∑

k∈Z

∫ 2kπ+ν−1

2kπ−ν−1

(1 + |u|)−Sdu .

For ν ≥ 2 the integral in the parentheses of the last display is less than 2ν−1(1/2 + |2kπ|)−S .
Since S > 1, we get that J1(u) is bounded over the domain ν ≥ 2.

It remains to prove that J2(ν) is bounded for ν large enough. We have, setting v = u−2kπ
for each k,

J2(ν) = ν−1
∑

k∈Z

∫

ν−1≤|v|≤π
|v|−2(1 + |2kπ + v|)−S dv .

Now since
sup
v∈R

∑

k∈Z

(1/2 + |2kπ + v|)−S <∞ ,

we get by inverting the integral with the summation,

J2(ν) ≤ Cν−1

∫

ν−1≤|v|≤π
|v|−2 dv .

Hence J2 is bounded over the domain ν ≥ 2, completing the proof. �

A Integral representations

It is convenient to use an integral representation in the spectral domain to represent the
random processes (see for example Major [1981], Nualart [2006]). The stationary Gaussian
process {Xk, k ∈ Z} with spectral density (2) can be written as

Xℓ =

∫ π

−π
eiλℓf1/2(λ)dŴ (λ) =

∫ π

−π

eiλℓf∗1/2(λ)

|1− e−iλ|d dŴ (λ), ℓ ∈ Z . (101)

This is a special case of

Î(g) =

∫

R

g(x)dŴ (x), (102)

where Ŵ (·) is a complex–valued Gaussian random measure satisfying, for any Borel sets A and

B in R, E(Ŵ (A)) = 0, E(Ŵ (A)Ŵ (B)) = |A∩B| and Ŵ (A) = Ŵ (−A). The integral (102) is
defined for any function g ∈ L2(R) and one has the isometry

E(|Î(g)|2) =
∫

R

|g(x)|2dx .

30



The integral Î(g), moreover, is real–valued if g(x) = g(−x).
We shall also consider multiple Itô–Wiener integrals

Îq(g) =

∫ ′′

Rq

g(λ1, · · · , λq)dŴ (λ1) · · · dŴ (λq)

where the double prime indicates that one does not integrate on hyperdiagonals λi = ±λj, i 6=
j. The integrals Îq(g) are handy because we will be able to expand our non–linear functions
G(Xk) introduced in Section 1 in multiple integrals of this type.

These multiples integrals are defined for g ∈ L2(Rq,C), the space of complex valued
functions defined on Rq satisfying

g(−x1, · · · ,−xq) = g(x1, · · · , xq) for (x1, · · · , xq) ∈ R
q , (103)

‖g‖2L2 :=

∫

Rq

|g(x1, · · · , xq)|2 dx1 · · · dxq <∞ . (104)

The integral Îq(g) is real valued and verifies Îq(g) = Îq(g̃), where

g̃(x1, · · · , xq) =
1

q!

∑

σ

g(xσ(1), · · · , xσ(q)) .

Here the sum is over all permutations of {1, . . . , q}.

E(Îq(g1)Îq′(g2)) =

{
q!〈g̃1, g̃2〉L2 if q = q′

0 if q 6= q′.
(105)

Hermite polynomials are related to multiple integrals as follows : if X =
∫
R
g(x)dŴ (x) with

E(X2) =
∫
R
g2(x)dx = 1 and g(x) = g(−x) so that X has unit variance and is real–valued,

then

Hq(X) = Îq(g
⊗q) =

∫ ′′

Rq

g(x1) · · · g(xq)dŴ (x1) · · · dŴ (xq) . (106)

Since X has unit variance, one has for any ℓ ∈ Z,

Hq(Xℓ) = Hq

(∫ π

−π
eiξℓf1/2(ξ)dŴ (ξ)

)

=

∫ ′′

(−π,π]q
eiℓ(ξ1+···+ξq) ×

(
f1/2(ξ1)× · · · × f1/2(ξq)

)
dŴ (ξ1) · · · dŴ (ξq) .

Then by (17), we have

Wj,k =
∑

ℓ∈Z

h
(K)
j (γjk − ℓ)Hq0(Xℓ) = Îq0(f

(q0)
j,k ) (107)

with

f
(q)
j,k (ξ1, · · · , ξq) = eikγj(ξ1+···+ξq) × ĥ

(K)
j (ξ1 + · · · + ξq)f

1/2(ξ1) · · · f1/2(ξq)1⊗q
(−π,π)(ξ) , (108)
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because by (9),
∑

ℓ∈Z

eiℓ(ξ1+···+ξq)h
(K)
j (γjk − ℓ) = eiγjk(ξ1+···+ξq)

∑

u∈Z

e−iu(ξ1+···+ξq)h
(K)
j (u)

= eiγjk(ξ1+···+ξq)ĥ
(K)
j (ξ1 + · · ·+ ξq) .

The following proposition can be found in Peccati and Taqqu [2011]. It is an extension to
our complex–valued setting of a corresponding result in Nualart [2006] for multiple integrals
in a real–valued setting. We provide a proof for the convenience of the reader.

Proposition A.1 Let (q, q′) ∈ N2. Assume that f, g are two symmetric functions belonging
respectively to L2(Rq) and L2(Rq′) then the following product formula holds :

Îq(f)Îq′(g) =

q∧q′∑

p=0

(2π)pp!

(
q
p

)(
q′

p

)
̂Iq+q′−2p(f⊗pg), (109)

where for any p ∈ {1, · · · , q ∧ q′}

(f⊗pg)(t1, · · · , tq+q′−2p) = (2π)p
∫

Rp

f(t1, · · · , tq−p, s)g(tq−p+1, · · · , tq+q′−2p,−s)dps . (110)

Proof. We first assume that f and g are of the form

f = f1 ⊗ f2, g = g1 ⊗ g2 ,

where f1, f2, g1, g2 belong respectively to L2(Rq−p,C), L2(Rq′−p,C), L2(Rp,C), L2(Rp,C). In
that special case, using that for any q ≥ 0 and any f ∈ L2(Rq), Îq(f) = (2π)−q/2Iq(f̂), one
has

Îq(f)Îq′(g) = Îq(f1 ⊗ f2)Îq′(g1 ⊗ g2)

= (2π)−(q+q′)/2Iq(f̂1 ⊗ f̂2)Iq′(ĝ1 ⊗ ĝ2) .

The assumptions on functions f1, f2, g1, g2 imply that their Fourier transform f̂1, f̂2, ĝ1, ĝ2
are real–valued functions belonging respectively to L2(Rq−p,R), L2(Rq′−p,R), L2(Rp,R) and
L2(Rℓ,R). Then one can apply the usual product formula for Ito integrals (see for exam-
ple Nualart [2006]) and deduce that :

Iq(f̂1 ⊗ f̂2)Iq′(ĝ1 ⊗ ĝ2) =

q∧q′∑

p=1

p!

(
q
p

)(
q′

p

)
Iq+q′−2p((f̂1 ⊗ f̂2)⊗p (ĝ1 ⊗ ĝ2)) .

Note now that for any p

(f̂1 ⊗ f̂2)⊗p (ĝ1 ⊗ ĝ2) =

∫

Rp

f̂1(t1, · · · , tq−p)f̂2(s)ĝ1(tq−p+1, · · · , tq+q′−2p)ĝ2(s)ds

= f̂1(t1, · · · , tq−p)ĝ1(tq−p+1, · · · , tq+q′−2p)

∫

Rp

f̂2(s)ĝ2(s)ds

= f̂1(t1, · · · , tq−p)ĝ1(tq−p+1, · · · , tq+q′−2p)

∫

Rp

f2(t)g2(t)dt

= f̂1(t1, · · · , tq−p)ĝ1(tq−p+1, · · · , tq+q′−2p)

∫

Rp

f2(t)g2(−t)dt ,
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since g2(t) = g2(−t). Hence

Iq+q′−2p((f̂1 ⊗ f̂2)⊗p (ĝ1 ⊗ ĝ2)) =

(∫

Rp

f2(t)g2(−t)dt
)
× Iq+q′−2p(f̂1 ⊗ ĝ1)

=

(∫

Rp

f2(t)g2(−t)dt
)
× Iq+q−2p(f̂1 ⊗ g1)

=

(∫

Rp

f2(t)g2(−t)dt
)
× (2π)(q+q′−2p)/2 ̂Iq+q′−2p(f1 ⊗ g1) .

We thus get the claimed results for this special case. The conclusion for general f and g
follows using the density of L2(Rq−p,R)⊗ L2(Rp,R) in L2(Rq,R). �
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