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SIMPLICIAL HOMOLOGY OF RANDOM CONFIGURATIONS

L. DECREUSEFOND, E. FERRAZ, H. RANDRIAMBOLOLONA, AND A. VERGNE

Abstract. Given a Poisson process on a d-dimensional torus, its random
geometric simplicial complex is the complex whose vertices are the points of
the Poisson process and simplices are given by the C̆ech complex associated
to the coverage of each point. By means of Malliavin calculus, we compute
explicitly the nth order moment of the number of k-simplices. The two first
order moments of this quantity allow us to find the mean and the variance
of the Euler caracteristic. Also, we show that the number of any connected
geometric simplicial complex converges to the Gaussian law when the intensity
of the Poisson point process tends to infinity. We use a concentration inequality
to find bounds for the for the distribution of the Betti number of first order
and the Euler characteristic in such simplicial complex.

1. Motivation

As technology goes on [13, 14, 17], one can expect a wide expansion of the
so-called sensor networks. Such networks represent the next evolutionary step
in building, utilities, industrial, home, agriculture, defense and many other con-
texts [4]. These networks are built upon a multitude of small and cheap sensors
which are devices with limited transmission capabilities and power. Each sensor
monitors a region around itself by measuring some environmental quantities (e.g.,
temperature, humidity), detecting intrusion, etc, and broadcasts its collected in-
formation to other sensors or to a central node. Two questions are of paramount
importance: can information be shared among the whole network, is the whole
region totally monitored?

Several researches have recently been dedicated to this problem considering a
variety of situations. One can distinguish three main scenarios: those where it is
possible to choose the position of each sensor, those where sensors are arbitrarily
deployed in the target region with the control of a central station and those where
the sensor locations are random in a decentralized system. In many cases, placing
the sensors is impossible or implies a high cost. Sometimes this impossibility comes
from the fact that the cost of placing each sensor is too large and sometimes the
network has an inherent random behavior (like in the ad-hoc case, where users
move). In addition, this policy cannot take into account the configuration of the
network in the case of failure of some sensor. The drawback of the second scenario is
a higher cost of sensors, since each one has to communicate with the central station.
Besides, the central station itself increases the cost of the whole system. Moreover,
if sensors are supposed to know their positions, an absolute positioning system has
to be included in each sensor, making their hardware even more complex and then
more expensive. It is thus important to investigate the third scenario: randomly
located sensors, no central station. Actually, if we can predict some characteristics
of the topology of a random network, the number of sensors (or, as well, the power
supply of them) can be a priori determined such that a given network may operate

2010 Mathematics Subject Classification. 60G55,60H07,55U10.

Key words and phrases. C̆ech complex, Concentration inequality, Homology, point processes,
Rips-Vietoris complex.

1



2 L. DECREUSEFOND, E. FERRAZ, H. RANDRIAMBOLOLONA, AND A. VERGNE

Figure 1. From left to right. a) Sensors and their coverage; b)
simplicial complex representation when sensors are monitoring the
region; c) simplicial complex representation when sensors are com-
municating among them.

with high probability. For instance, we can choose the mean number of sensors
such that, if they are randomly deployed, there is more than 99% of probability the
network to be completely connected.

Usually, sensors are deployed in the plane or in the ambient space, thus math-
ematically speaking, one has to deal with configurations in R

2, R3 or a manifold.
The recent works of Ghrist and his collaborators [8, 6] show how, in any dimension,
0algebraic topology can be used to compute the coverage of a given configuration
of sensors. Trying to pursue their work for random settings, we completely solved
the problem in one dimension in [7] by basic methods inspired by queuing theory,
without using the forthcoming sophisticated tools of algebraic topology. Since we
cannot order points in R

d, it is not possible to generalize the results obtained in
this earlier work to higher dimension.

A simplicial complex is a generalization of a graph: while we represent a graph
with points and edges, a simplicial complex can be represented by points, edges,
filled triangles, filled tetrahedrons and so on. It is usual to intepret ǫ as the radius
of monitoring but a different interpretation can be given if the sensors are commu-
nicating among them. In this case, we suppose that sensors have a power supply
allowing them to transmit theirs ID’s and, at the same time, sensors have receivers
which can identify the transmitted ID’s of other sensors above a threshold power.
The sensors, knowing mutually the ID’s of the close neighbors, are considered con-
nected, creating an information network. The problem remains analogous as the
previous one, except that we substitute the coverage radius ǫ by a communication
one of ǫ/2. We can see examples of simplicial complexes representations given by
sensors communicating among them or monitoring a region in Fig. 1.

In this work we consider that sensors are the atoms of a Poisson point process.
Instead of the Euclidean norm, we use the maximum norm along this paper. We
consider this for three reasons: this norm represents a superior and an inferior
limits for the euclidean norm (we can inscribe and circumscribe a circle with two
squares); due to the random interactions with the environment (causing shadowing
and fading), even the euclidean norm cannot capture with precision the real behav-
ior of this kind of sensor networks, so we choose the norm that allows us to simplify
the calculations; using the maximum norm, the C̆ech complex becomes equal to
the Rips-Vietoris complexes, which allows us to apply directly some results of the
algebraic topology. Finally, we assume that sensors lie over d-torus with sides a,
T
d
a. This choice was motivated by three factors: it avoids the side effects, it helps

to determine weather or not a sensor network in the d-box is completely covered
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and if ǫ is small compared to a, the calculations for all parameters in the d-torus
are a good approximation for the [0, a]d box.

v1
a

a

a

a
v1

[0, a]× [0, a]
T

2
a

Figure 2. Illustration of the coverage of a point and the region
where points can lie, in the 2 dimensional case.

When we were writing this paper, we were informed about [12]. Though there
are certain similarities between our work and that of Kahle, we would like to point
out the differences. In [12], the number of points is fixed and the positions are
i.i.d. random variables in the plane. It does not differ very much from a Poisson
point process where the number of points is random. However, for our initial
motivation, Poisson process fits better since due to failures or movements, we don’t
know at each time the number of sensors. Moreover, Kahle is only concerned with
asymptotic regimes of the mean value of the Betti numbers. We do give exact
formulas for any moment of the number of simplices. Using the Morse inequality,
we can then deduce the asymptotic regimes for the Betti numbers as in [12]. By
using Malliavin calculus, we can evaluate the speed of convergence in the CLT
and give a concentration inequality to bound the distribution tail of the first Betti
number.

The paper is organized in the following way: Sections 2 and 3 are primers on
algebraic topology and Malliavin calculus. In Section 4, the average number of
simplices and the mean of the Euler characteristics are computed. Section 5 applies
the Malliavin calculus in order to find the explicity expression of second order
moments of the number of k-simplices and the Euler characteristic. Using the
same solving strategy of the preview section, Section 6 finds the expression for the
nth order moment of the number of simplices. Section 7 is devoted to asymptotic
analysis: We prove a central limit theorem valid for any finite simplex and we
use concentration inequality to estimate the distribution queue of the number of
simplices of any order.

2. Algebraic Topology

For further reading on topology, see [10, 1, 15]. Graphs can be generalized
to more generic topological objects known as simplicial complexes. While graphs
model binary relations, simplicial complexes represent higher order relations. Given
a set of points V , a k-simplex is an unordered subset {v0, v1, · · · , vk} where vi ∈ V
and vi 6= vj for all i 6= j. The faces of the k-simplex {v0, v1, · · · , vk} are defined as
all the (k − 1)-simplices of the form {v0, · · · , vj−1, vj+1, · · · , vk} with 0 ≤ j ≤ k.
A simplicial complex is a collection of simplices which is closed with respect to the
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inclusion of faces, i.e., if {v0, v1, · · · , vk} is a k-simplex then all its faces are in the
set of (k − 1)-simplices.

Given U = (Uv, v ∈ T) a collection of open sets, the C̆ech complex of U de-
noted by C(U), is the abstract simplicial complex whose k-simplices correspond
to (k + 1)-tuples of distinct elements of U that have non empty intersection, so

{v0, v1, · · · , vk} is a k-simplex if and only if
⋂k

i=0 Uvk 6= ∅.
One can define an orientation for a simplicial complex by defining an order on

vertices. A change in the orientation corresponds to a change in the sign of the
coefficient as

[v0, · · · , vi, · · · , vj , · · · , vk] = −[ v0, · · · , vj , · · · , vi, · · · , vk].

For each integer k, Ck(X) is the vector space spanned by the set of oriented k-
simplices of X . The boundary map ∂k is defined to be the linear transformations
∂k : Ck → Ck−1 which acts on basis elements [v0, · · · , vk] via

∂k[v0, · · · , vk] =
k∑

i=0

(−1)k[v0, · · · , vi−1, vi+1, · · · , vk].

Examples of such operations are given in Fig. 3.

v0

v1

v2 v0

−
v2

+

[v0, v1] + [v1, v2]
∂−→ [v2]− [v0]

v0

v1

v2 v0

v1

v2

[v0, v1, v2]
∂−→ [v1, v2]− [v0, v2]

+[v0, v1]

v0

v1

v2 v3

Filled Empty

v0

v1

v2
v3

[v0, v1, v2, v3]
∂−→

+[v1, v2, v3]

−[v0, v2, v3]

+[v0, v1, v3]

−[v0, v1, v2]

Figure 3. Examples of boundary maps. From left to right. An
application over 1-simplices. Over a 2-simplex. Over a 3-simplex,
turning a filled tetrahedron to an empty one.

This map gives rise to a chain complex: a sequence of vector spaces and linear
transformations

· · · ∂k+2−→ Ck+1(X)
∂k+1−→ Ck(X)

∂k−→ Ck−1(X) · · · ∂2−→ C1(X)
∂1−→ C0(X).

A standard result then asserts that for any integer k,

∂k ◦ ∂k+1 = 0.

If one defines

Zk = ker∂k and Bk = im∂k+1,

this induces that Bk ⊂ Zk.
The k-dimensional homology of X , denoted Hk(X) is the quotient vector space,

Hk(X) =
Zk(X)

Bk(X)
·

and the k-th Betti number of X is its dimension:

βk = dimHk = dimZk − dimBk.
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0 00
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∂
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Figure 4. A chain complex showing the sets Ck, Zk and Bk.

Let sk be the number of k-simplices in a simplicial complex X . The well known
topological invariant named Euler characteristic for X , denoted by χ(X), is an
integer defined by:

χ(X) =
∞∑

i=0

(−1)iβi.

A well known theorem states that this is also given by:

χ(X) =

∞∑

i=0

(−1)isi.

The simplicial complexes we consider are of a special type. They can be considered
as a generalization of geometric random graphs.

Definition 1. Given ω a finite set of points on the torus. For ǫ > 0, we define
Uǫ(ω) = {Bd∞

(v, ǫ), v ∈ ω} and Cǫ(ω) = C(Uǫ(ω)), where Bd∞
(x, r) = {y ∈

T
a
d, ‖x− y‖∞ < r}.

Theorem 1. Suppose ǫ < a/4. Then Cǫ(ω) has the same homotopy type as Uǫ(ω).
In particular they have the same Betti numbers.

Proof. This will follow from the so-called nerve lemma of Leray, as stated in [19,
Theorem 7.26] or [3, Theorem 10.7]. One only needs to check that any non-empty
intersection of sets Bd∞

(v, ǫ) is contractible.
Consider such a non-empty intersection, and let x be a point contained in it.

Then, since ǫ < a/4, the ball Bd∞
(x, 4ǫ) can be identified with a cube in the Eu-

clidean space. Then each Bd∞
(v, ǫ) containing x is contained in Bd∞

(x, 4ǫ), hence
also becomes a cube with this identification, hence convex. Then the intersection
of these convex sets is convex, hence contractible. �

Definition 2. Let ω be a finite set of points in T
a
d. For any ǫ > 0, the Rips-

Vietoris complex of ω, Rǫ(ω), is the abstract complex whose k-simplices correspond
to unordered (k + 1)-tuples of points in ω which are pairwise within distance less
than ǫ of each other.

Lemma 2. For the torus T
d
a equipped with the product distance d∞, Rǫ(ω) has the

homotopy type of the C̆ech complex C2ǫ(ω)
The proof is given in [8] in a slightly different context, but it is easy to check

that it works here as well. It must be pointed out that C̆ech and Rips-Vietoris
simplicial complexes can be defined similarly for any distance on T

d
a but it is only

for the product distance that the homotopy type of both complexes coincides.
By Lemma 2, k points are forming a (k − 1)-simplex whenever they are two-

by-two closer than 2ǫ from each other. We define along the paper h(v1, · · · , vk)
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as

h(v1, · · · , vk) = hk(v1, · · · , vk)
=

∏

1≤i<j≤k

1[‖vi−vj‖<2ǫ],

which determines if a set of k distinct ordered points generates a (k − 1)-simplex.

Proposition 3. Let ω ∈ T
d
a be a set of points, generating the simplicial complex

Cǫ(ω). Then, if i > d, βi(ω) = 0.

Proof. By Theorem 1, Cǫ(ω) has the same homology as Uǫ(ω). But Uǫ(ω) is an
open manifold of dimension d, so its Betti numbers βi(ω) vanish for i > d, see for
example [9, Theorem 22.24]. �

Proposition 4. Let ω ∈ T
d
a be a set of points, generating the simplicial complex

Cǫ(ω). There are only two possible values for the d-th Betti number of Cǫ(ω):
i) βd = 0, or
ii) βd = 1.

If the second holds, then we also have χ(Cǫ(ω)) = 0.

Proof. By Theorem 1, Cǫ(ω) has the same homology as Uǫ(ω). Now, Uǫ(ω) is an
open submanifold of the torus, so there are only two possibilities:

i) Uǫ(ω) is a strict open submanifold, hence non-compact
ii) Uǫ(ω) = T

d
a.

In the first case, βd(ω) = 0 by [9, Corollary 22.25]. In the second case Cǫ(ω) has
same homology as the torus, hence βd(ω) = 1 and χ(ω) = 0. �

2.1. Application to sensor networks. We now interpret the topological prop-
erties of simplicial complexes in terms of connectivity and coverage. In terms of
coverage in a network, a 0-simplex represents a single sensor and the existence of
a k-simplex means that the (k + 1) points of this simplex are covering the convex
hull containing those points. We can see in Figure 1, examples of some simplices
and their interpretation in terms of sensor networks.

In a very intuitive fashion, the number of k-simplices itself shows some tendency
in the network: if in two networks with identical number of sensors, one of them has
more 1-simplices than the other, this first one has a tendency to be more connected;
by the same reason, if a network has more 2-simplices than another one, the region
on the first case tends to be more strongly covered.

In a more sophisticated way, Theorem 1 formalizes that, in order to determine
coverage of sensors, it suffices interpret them as C̆ech complexes. Unfortunately, a
moment of thought shows that constructing the C̆ech complex cannot be done by
pairwise only communications between sensors. Thus, the only complex that can
be computed this way is the Rips-Vietoris complex.

An interpretation to Euler characteristic is given by Proposition 4, where we see
that χ = 0 is a necessary condition to have a complete coverage of the torus, and
βd = 1 is a necessary and sufficient condition. This could in turn translate into
conditions for coverage in [0, a]d when considered as embedded in Euclidean space
(i.e., not as a torus), but then one needs to be careful about border effects. For
example, one can say that βd = 1 is a sufficient condition for coverage of [ǫ, a− ǫ]d.

3. Stochastic Model

3.1. Poisson point process. To characterize the randomness of the system, we
consider that the set of points is represented by a Poisson point process ω with
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Sensor network coverage C̆ech complex representation

S1 v1

S1 S2 v1 v2

S1 S2

S3

v1 v2

v3

S1 S2

S2

v1 v2

v3

S1

S2

S3
S4

ǫ
ǫ

ǫ

ǫ

v1

v2

v3v4

Table 1. Topological representation of the coverage of a sensor
network. Each node v represents a sensor. From top to bottom,
the highest order simplex is a vertex, an edge, a triangle, three
edges, a tetrahedron.

intensity λ in a Polish space Y . The space of configurations on Y , is the set of
locally finite simple point measures (cf [18]):

ΩY =

{

ω =

n∑

k=0

δ(xk) : (xk)
k=n
k=0 ⊂ Y, n ∈ N ∪ {∞}

}

,

where δ(x) denotes the Dirac measure at x ∈ Y . Simple measure means that
ω({x}) ≤ 1 for any x ∈ Y . Locally finite means that ω(K) < ∞ for any compact K
of Y . It is often convenient to identify an element ω of ΩY with the set corresponding
to its support, i.e.,

∑n
k=0 δ(xk) is identified with the unordered set {x1, · · · , xn}.

For A ∈ B(Y ), we have δ(xk)(A) = 1[xk∈A], so

ω(A) =
∑

xk∈ω

1[xk∈A] =

∫

A

dω(x),

counts the number of atoms in A. The configuration space ΩY is endowed with the
vague topology and its associated σ-algebra denoted by FY . Since ω is a Poisson
point process of intensity λ:
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i) For any A, ω(A) is a random variable of parameter λS(A), i.e.,

P(ω(A) = k) = e−λS(A) (λS(A))
k

k!
·

ii) For A′ ∈ B(Y ), for any disjoints A, A′, the random variables ω(A) and ω(A′)
are independent.

Along this paper, we refer Eλ [F (ω)] as the mean of some function F depending
on ω given that the intensity of this process is λ and Pλ[ω ∈ Y ] = Eλ

[
1[ω∈Y ]

]
.

The definitions of Vλ [F (ω)] and Covλ [F (ω), G(ω)] are straightforward. Define
∆n = {(x1, · · · , xn) ∈ Y n | xi 6= xj , ∀i 6= j}. Let f(x1, · · · , xn) be a measurable
function and let F (ω) be a random variable given by

F (ω) =
∑

xi∈ω∩A,1≤i≤n
xi 6=xj if i6=j

f(x1, · · · , xn) =

∫

A∩∆n

f(x1, · · · , xn) dω(x1) · · · dω(xn),

A well known property of the Poisson point processes [5] states that

Eλ [F (ω)] =

∫

A

f(x1, · · · , xn) dλ(x1) · · · dλ(xn).

A real function f : Y n → R is called symmetric if

f(xσ(1), · · · , xσ(n)) = f(x1, · · · , xn)

for all permutations σ of Sn.The space of symmetric square integrable random
variables is denoted by L2(λ)◦n. For f ∈ L2(λ)◦n, the multiple Poisson stochastic
integral In(fn) is then defined as

In(fn)(ω) =

∫

∆n

fn(x1, · · · , xn)( dω(x1)− dλ(x1)) · · · ( dω(xn)− dλ(xn)).

If fn ∈ L2(λ)◦n and gm ∈ L2(λ)◦m, the isometry formula

(1) Eλ [In(fn)Im(gm)] = n!1[m=n]〈fn, gm〉L2(λ)◦n

holds true (see [18]). Furthermore, we have:

Theorem 5. Every random variable F ∈ L2(ΩY , P) admits a (unique) Wiener-
Poisson decomposition of the type

F = Eλ [F ] +

∞∑

n=1

In(fn),

where the series converges in L2(P) and, for each n ≥ 1, the kernel fn is an element
of L2(λ)◦n. Moreover, we have the isometry

(2) ‖F −Eλ [F ] ‖2L2(λ)◦n =
∞∑

n=1

n!‖fn‖2L2(R+)◦n .

For fn ∈ L2(λ)◦n and gm ∈ L2(λ)◦m, we define fn ⊗l
k gm, 0 ≤ l ≤ k, to be the

function:

(3) (yl+1, · · · , yn, xk+1, · · · , xm) 7−→
∫

Y l

fn(y1, · · · , yn)gm(y1, · · · , yk, xk+1, · · · , xm) dλ(y1) . . . dλ(yl).

We denote by fn ◦lk gm the symmetrization in n+m− k − l variables of fn ⊗l
k gm,

0 ≤ l ≤ k. This leads us to the next proposition, shown in [18]:
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Proposition 6. For fn ∈ L2(λ)◦n and gm ∈ L2(λ)◦m, we have

In(fn)Im(gm) =

2(n∧m)
∑

s=0

In+m−s(hn,m,s),

where

hn,m,s =
∑

s≤2i≤2(s∧n∧m)

i!

(
n

i

)(
m

i

)(
i

s− i

)

fn ◦s−i
i gm

belongs to L2(λ)◦n+m−s, 0 ≤ s ≤ 2(m ∧ n).

In what follows, given f ∈ L2(λ)◦q (q ≥ 2) and t ∈ Y , we denote by f(∗, t) the
function on Y q−1 given by (x1, · · · , xq−1) 7−→ f(x1, · · · , xq−1, t).

Definition 3. Let DomD be the the set of random variables F ∈ L2(P ) admitting
a chaotic decomposition such that

∞∑

n=1

qq!‖fn‖2 < ∞.

Let D be defined by

D : DomD → L2(ΩY × Y, P × λ)

F = Eλ [F ] +
∑

n≥1

In(fn) 7−→ DtF =
∑

n≥1

nIn−1(fn(∗, t)).

It is known, cf. [11], that we also have

DtF (ω) = F (ω ∪ {t})− F (ω), dP × dt a.e..

Definition 4. The Ornstein-Uhlenbeck operator L is given by

LF = −
∞∑

n=1

nIn(fn),

whenever F ∈ DomL, given by those F ∈ L2P such that their chaotic expansion
verifies

∞∑

n=1

q2q!‖fn‖2 < ∞.

Note that Eλ [LF ] = 0, by definition and (1).

Definition 5. For F ∈ L2(P) such that Eλ [F ] = 0, we may define L−1 by

L−1F = −
∞∑

n=1

1

n
In(fn).

Combining Stein’s method and Malliavin calculus yields the following theorem,
see [16]:

Theorem 7. Let F ∈ DomD be such that Eλ [F ] = 0 and Var(F ) = 1. Then,

dW (F, N (0, 1)) ≤ Eλ

[∣
∣
∣
∣
1−

∫

Y

[DtF ×DtL
−1F ] dλ(t)

∣
∣
∣
∣

]

+

∫

Y

Eλ

[

|DtF |2
∣
∣DtL

−1F
∣
∣

]

dλ(t).

Another result from the Malliavin calculus used in this work is the following one,
quoted from [18]:
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Theorem 8. Let F ∈ DomD be such that DF ≤ K, a.s., for some K ≥ 0 and
‖DF‖L∞(Ω,L2(Y )) < ∞. Then

(4) P(F −Eλ [F ] ≥ x) ≤ exp

(

− x

2K
log

(

1 +
xK

‖DF‖L∞(Ω,L2(Y ))

))

.

Proposition 9. Let X a compact subset of Rd and consider the map τ : X → Y
as xi = kyi for xi ∈ X, yi ∈ Y and k a positive real constant. Denote by τ∗ω the
image measure of ω by τ , i.e., τ∗ : ΩX → ΩY maps

ω =

∞∑

i=1

δ(xi) to τ∗

∞∑

i=1

δ(kxi).

The application τ∗ : ΩX → ΩY maps the Poisson measure λ on ΩX to the Poisson
measure λτ = λ/kd on ΩY . Moreover, if ǫτ is the distance in Y such that two
points will be connected, the homology of the two simplicial complexes Cǫ(ω)ω∈T

d
[a]

and Cǫτ (τ∗ω)τ∗ω∈T
d
[ak]

are the same for any k if λτ = λ/kd and ǫτ = kǫ.

Proof. A slightly changing on Propositions 6.1.7 and 6.1.8 of [18] is enough to show
that τ∗ maps the Poisson measure λ on ΩX to the Poisson measure λτ = λ/kd on
ΩY . Then, it suffices to realize that for xi ∈ X and for yi ∈ Y :

h(x1, · · · , xk) =
∏

1≤i<j≤k

1[‖xi−xj‖<2ǫ]

=
∏

1≤i<j≤k

1[‖kxi−kxj‖<2kǫ],

hence

h(y1, · · · , yk) =
∏

1≤i<j≤k

1[‖yi−yj‖<2ǫτ ],

which concludes the proof. �

4. First order moments

Consider that a Poisson point process ω generates a C̆ech complex Cǫ(ω), and,
even though the number of k-simplices, the Betti’s number and the Euler charac-
teristic are functions of Cǫ(ω), we denote them, respectively, Nk+1(Cǫ(ω)) = Nk+1,
βk(Cǫ(ω)) = βk and χ(Cǫ(ω)) = χ. In this section, we evaluate the mean of the
number of k − 1-simplices, Eλ [Nk] and the mean Euler characteristic, Eλ [χ].

Theorem 10. Let ǫ ≤ a/6. Then, the mean number of (k−1)-simplices Nk(Cǫ(ω))
is given by

Eλ [Nk] =
λk(ak(2ǫ)k−1)d

k!
·

Proof. If (ui,1, · · · , ui,d) represents the coordinates of a point vi, we can separate
the indicator function as follows:

1[‖vi−vj‖<2ǫ] =

d∏

l=1

1[{|ui,l−uj,l|<2ǫ}∪{|ui,l−uj,l|>a−2ǫ}].

The number of (k − 1)-simplices can be counted by the expression:

Nk =
1

k!

∑

v1,··· ,vk∈ω
vi 6=vj if i6=j

h(v1, · · · , vk).
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Since ω is a Poisson point process of intensity λ, for a borel sets Ai, i integer we
have:

Eλ







∑

v1,···vk∈ω
vi 6=vj if i6=j

h(v1, · · · , vk)






= λk

∫

A1

· · ·
∫

Ak

h(v1, · · · , vk) dv1 . . . dvk.

Taking 1
k!h = f , Ai = T

d
a and defining

{|xi − xj | < 2ǫ} ∪ {|xi − xj | > a− 2ǫ} = dǫ(xi, xj),

we have:

Eλ [Nk] =
λk

k!

∫

Td
a

· · ·
∫

Td
a

h(v1, · · · , vk) dv1 . . . dvk

=
λk

k!

d∏

l=1

∫ a

0

· · ·
∫ a

0

∏

1≤i<j≤k

1[dǫ(ui,l,uj,l)] du1,l . . . duk,l

=
λk

k!





∫ a

0

. . .

∫ a

0

∏

1≤i<j≤k

1[dǫ(xi,xj)] dx1 . . . dxk





d

(5)

=
λk

k!








∫ a

0

∫ a

0

1[dǫ(xk,xk−1)] . . .

∫ a

0
︸ ︷︷ ︸

m integrals

k∏

i=k−m+1

1[dǫ(xi,xk−m)] . . .

∫ a

0

k∏

i=2

1[dǫ(xi,x1)] dx1 . . . dxk

)d

.(6)

Since 6ǫ ≤ a, the integration region is convex (see Fig. 5).

v0

v1

v2

v0

v1

v2

Figure 5. a) Maximum cover in Ta and ǫ = a/6. The red region
shows the cover of a point v0, the blue region is the cover of v1
and the green region is the cover of v2. b) Maximum cover in the
same conditions of a) when ǫ = a/5. In this case, we the three
covers intersect each other pairwise, but there is no intersection of
the three covers.
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Then, we can rewrite the integral in Eq. (6) as

(7)

∫ a

0

∫ a

0

1[dǫ(xk,xk−1)] · · ·
∫ a

0

k∏

i=2

1[dǫ(xi,x1)] dx1 . . . dxk =

a∫

0

∫ xk+2ǫ

xk−2ǫ

∫ min(xk,xk−1)+2ǫ

max(xk,xk−1)−2ǫ

. . .

∫ min(xk,··· ,x2)+2ǫ

max(xk,··· ,x2)−2ǫ

dx1 . . . dxk.

Then, consider a subset of the integration region [0, a]d of Eq. (7), defined as
A1, 2, ··· , k, such that x1 ≥ x1 ≥ . . . ≥ xk. In this case, we can write the inte-
gral over A1, 2, ··· , k as:

a∫

0

∫ xk+2ǫ

xk−2ǫ

. . .

∫ min(xk,··· ,x2)+2ǫ

max(xk, ··· ,x2)−2ǫ

1[xi≥xj if i≤j] dx1 . . . dxk =

a∫

0

∫ xk+2ǫ

xk

∫ xk+2ǫ

xk−1

. . .

∫ xk+2ǫ

x2

dx1 . . . dxk.

For σ ∈ Sk, we denote by Aσ the set Aσ(1), ··· , σ(k). Then,

⋃

σ∈Sk

Aσ = [0, a]d.

Moreover, since the function h(x1, · · · , xk) is symmetric, we can exchange the
integration variables in the integral of Eq. (5) without changing its result. As a
consequence, if σ ∈ Sk,

∫

· · ·
∫

Aσ

∏

1≤i<j≤k

1[dǫ(xi, xj)] dx1 . . . dxk =

∫

· · ·
∫

Aσ

∏

1≤i<j≤k

1[dǫ(xi, xj)] dxi1 . . . dxik .

Thus, we have

∫ a

0

· · ·
∫ a

0

∏

1≤i<j≤k

1[dǫ(xi, xj)] dx1 . . . dxk

=
∑

σ∈Sk

∫

· · ·
∫

Aσ

∏

1≤i<j≤k

1[dǫ(xi, xj)] dxi1 . . . dxik

= k!

∫

· · ·
∫

AId

∏

1≤i<j≤k

1[dǫ(xi, xj)] dx1 . . . dxk

= k!

a∫

0

∫ xk+2ǫ

xk

∫ xk+2ǫ

xk−1

. . .

∫ xk+2ǫ

x2

dx1 . . . dxk.

Then, by the change of variables yk−i = (xk−i − xk)/2ǫ for i = 1, k, we get:

k!

a∫

0

∫ xk+2ǫ

xk

∫ xk+2ǫ

xk−1

. . .

∫ xk+2ǫ

x2

dx1 . . . dxk =

(2ǫ)k−1k!

∫ a

0

∫ 1

0

∫ 1

yk−1

. . .

∫ 1

y2

dy1 . . . dyk−1 dxk.
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The integral in the right-handed term is evaluated substituting all yi for y′i − 1, so

(8) (2ǫ)k−1k!

∫ a

0

∫ 0

−1

∫ 0

y′

k−1

. . .

∫ 0

y′

2

dy′1 . . . dy′k−1 dxk =

(2ǫ)k−1k!a
1

(k − 1)!
= a(2ǫ)k−1k.

Finally, plug Eq. (8) into Eq. (6) to obtain:

Eλ [Nk] =
λk(ak(2ǫ)k−1)d

k!
,

and thus the proof is complete. �

Remark. The possibility of writing Eλ [Nk] as Eq. (5) is due the fact that we use the
maximum norm. This simplifies the calculations since we can treat each component
individually. However, considering the Euclidean norm it is still possible to find a
closed-form expression for Eλ [N2] and Eλ [N3] when we consider the Rips-Vietoris
complex in T

2
a. These expressions, obtained after solving some integrals, are given

by:

Eλ [N2] =
π(aλǫ)2

2
,

Eλ [N3] = π

(

π − 3
√
3

4

)

λ3a2ǫ4

6
·

Consider now the Bell’s polynomial Bd(x), defined as (see [2])

Bn(x) =

n∑

k=0

{
n
k

}

xk,

where n is an positive integer and

{
n
k

}

is the Stirling number of the second kind.

An equivalent definition of Bn can be:

Bn(x) = e−x
∞∑

k=0

xkkd

k!
·

Theorem 11. Let ǫ ≤ a/6. The mean of the Euler characteristic mean of the
simplicial complex Cǫ(ω) is given by

Eλ [χ] =
( a

2ǫ

)d

e−λ(2ǫ)d(−Bd(−λ(2ǫ)d)).

Proof. Since

Nk ≤ 1

k!

k−1∏

j=0

(N1 − j) ≤ Nk
1

k!
,

then
∞∑

k=1

Nk ≤
∞∑

k=1

Nk
1

k!
= eN1 .
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As Eλ

[
eN1
]
< ∞, we have Eλ

[
−∑∞

k=1(−1)kNk

]
= −∑∞

k=1(−1)kEλ [Nk] and

Eλ [χ] = Eλ

[

−
∞∑

k=1

(−1)kNk

]

= −
∞∑

k=1

(−1)kEλ [Nk]

= −
∞∑

k=1

(−1)k
λk(ak(2ǫ)k−1)d

k!

=
ad

−(2ǫ)d

∞∑

k=0

(−λ(2ǫ)d)k+1(k + 1)d

(k + 1)!

=
ade−λ(2ǫ)d

−(2ǫ)d
eλ(2ǫ)

d
∞∑

k=0

(−λ(2ǫ)d)kkd

k!

=
( a

2ǫ

)d

e−λ(2ǫ)d(−Bd(−λ(2ǫ)d)).

The proof is thus complete. �

If we take d = 1, d = 2 and d = 3, we obtain:

Eλ [χ] (Cǫ(ω))ω∈T[a]
= aλe−λ2ǫ,

Eλ [χ] (Cǫ(ω))ω∈T
2
[a2]

= a2λe−λ(2ǫ)2
(
1− λ(2ǫ)2

)
,

Eλ [χ] (Cǫ(ω))ω∈T
3
[a3]

= a3λe−λ(2ǫ)3
(
1− 3λ(2ǫ)3 + (λ(2ǫ)3)2

)
.

Remark. For c a positive real, Eλ [χ] is invariant under the transformation λ′ = λ/c,
ǫ′ = cǫ and a′ = ca. Taking c = 1/2ǫ, we obtain:

Eλ [χ] = a′de−λ′

(−Bd(−λ′)).

Hence, the mean depends actually only on a′ and λ′.

The following result is well known.

Lemma 12. If Bd(x) is the Bell’s polynomial and for d ≥ 1, the following relations
are valid:

d

dx
Bd(x) =

Bd+1(x)

x
− Bd(x),

d

dx
(exBd(x)) =

ex

x
Bd+1(x).

According to these relations, it is routine to prove the following theorem.

Theorem 13. The function (λ 7→ Eλ [χ]) has exactly d non-negative real roots.
Moreover, between each consecutive roots and after the last one, there is exactly
one critical point.

We can see by the expression of Eλ [χ] that this quantity tends to 0 as λ tends
to infinity. This convergence is due the fact that the Euler characteristic of the
C̆ech complex of the cover tends to the Euler characteristic of the d-Torus where
the points are deployed. This is shown in the following theorem.

Theorem 14. The Betti numbers of C(Uǫ) converge in probability to the Betti
number of the torus as λ goes to infinity:

Pλ

(
d⋂

i=0

(

βi(Cǫ) = βi(T
d
[a])
)
)

λ→∞−−−−→ 1.
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Proof. Let η < ǫ/2, by compacity of the torus, there exists a finite collection of
balls B of radius η covering T

d
[a]. Since η < ǫ/2, if x belongs to some ball B ∈ B

then B ⊂ B(x, ǫ), hence
⋂

B∈B

(ω(B) 6= 0) ⊂
(

Uǫ(ω) = T
d
[a]

)

.

Thus,

Pλ

(

Uǫ(ω) 6= T
d
[a]

)

≤ Pλ

(
⋃

B∈B

(ω(B) = 0)

)

≤ K exp(−λ(2η)d)
λ→∞−−−−→ 0.

Moreover, by the nerve lemma

(

Uǫ(ω) = T
d
[a]

)

⊂
d⋂

i=0

(

βi(Cǫ) = βi(T
d
[a])
)

,

and the result follows. �

The following lemma is straightforward.

Lemma 15. Let k1, k2 and k3 be real positive constants and f : R2
+ → R defined

as

f(x, y) = exp

(

−k1 − x

2k2
log

(

1 +
(k1 − x)k2

k3y

))

·

Then, for k1 − x > 0, the function is strictly increasing with respect to x and with
respect to y.

Theorem 16. For y > λad, we have

Pλ(β0 ≥ y) ≤ exp

(

−y − λad

2
log

(

1 +
y − λad

(2d − 1)2λ

))

·

Proof. To apply Theorem 8, we need to evaluate max(Dβ0) and ‖Dβ0‖L∞(Ω,L2(Y )).

Since there are more points than connected components, Eλ [β0] ≤ Eλ [N0] = λad.
According to the definition of D, max(Dβ0) is the maximum variation of β0 induced
by the addition of an arbitrary point. If this point is at a distance smaller than
ǫ from ω, then Dβ0 ≤ 0, otherwise, Dβ0 = 1, so max(Dβ0) = 1. Besides, this
added point can join at most two connected components in each dimension, so in
d dimensions it can join at most 2d connected component, which means that Dβ0

ranges from −(2d − 1) to 1, and then

‖Dβ0‖L∞(Ω,L2(Y )) ≤ λmax |Dβ0|2 = λ(2d − 1)2.

Using Lemma 15 and Theorem 8, we get:

Pλ(β0 ≥ y) ≤ exp

(

−y − λad

2
log

(

1 +
y − λad

(2d − 1)2λ

))

,

for y > λad ≥ Eλ [β0]. �

5. Second order moments

We use all the definitions of the previous section.

Lemma 17. We can rewrite Nk as

Nk =
1

k!

k∑

i=0

(
k

i

)

λk−iIi

(
∫

(Td
a)

i

h(x1, . . . , xk) dx1 . . . dxk−i

)

.
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Proof. We have that
∫

∆k

h(x1, · · · , xk)( dω(x1)− λ dx1) . . . ( dω(xi)− λ dxi)λ dxi+1 . . . λ dxk

=

i∑

j=0

(−1)j
(
i

j

)∫

∆k

h(x1, · · · , xk) dω(x1) . . . dω(xj)λ dxj+1 . . . λ dxk.

Thus, after some algebrism with the binomial factors, we have

1

k!

k∑

i=0

(
k

i

) i∑

j=0

(−1)j
(
i

j

)∫

∆k

h(x1, · · · , xk) dω(x1) . . . dω(xj)λ dxj+1 . . . λ dxk

=
1

k!

∫

∆k

h(x1, · · · , xk) dω(x1) . . . dω(xk) = Nk,

concluding the proof. �

Definition 6. Let C1 and C2 be two simplices with common vertices. For L ∈
P({1, 2}), let us denote mL the number of vertices belonging exactly to the list L of
simplices.

Then M = m12 +m1 +m2 is the total number of vertices and J2 represents the
integral on these two simplices:

J2(m12,m1,m2) =

∫

∆m12+m1

∫

∆m12+m2

hm12+m1hm12+m2 dx1 . . . dxM .

with x1, · · · , xM being the M vertices.

Lemma 18. For d = 1 and ǫ = 1/2, we have

J2(m12,m1,m2) = m12 +m1 +m2 +
2m1m2

m12 + 1
.(9)

Proof. Let us split the integration domain of J2 in two domains S1 and S2 corre-
sponding to the cases:

(1) All the vertices are connected with each other, thus there is only one sim-
plex. The integral on S1 is simply the number of points in the simplex:
M = m12 +m1 +m2.

(2) There are at least two vertices at distance d > 1, which leads to two
simplices. By symetry we can choose to order the mL vertices for each
L ∈ P({1, 2}) from lowest to greatest or the opposite and choose which
simplex is on which side of the axis. Thus we have the integral on S2 equal
to 2m12!m1!m2!A, with A an integral whose calculation is detailed below.

We choose to enumerate the vertices of the simplexes such that:

• x1, · · · , xm12 are the m12 common vertices.
• xm12+1, · · · , xm12+m1 are the m1 vertices of only C1.
• xm12+m1+1, · · · , xM are the m2 vertices of only C2.

Without loss of generality we can choose the origin to be x1. The vertices are now
order as described in Fig. 6:

0 ≤ xm12 ≤ xm12−1 ≤ · · · ≤ x2 ≤ 1,

−1 ≤ x2 − 1 ≤ xm12+1 ≤ xm12+2 ≤ · · · ≤ xm12+m1 ≤ xm12+1 + 1,

xm12+1 ≤ xm12+m1+1 − 1 ≤ xM ≤ xM−1 ≤ · · · ≤ xm12+m1+1 ≤ 1,
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−1 0 1x2xm12
. . .

1

xm12+1 xm12+m1. . .

1

xm12+m1+1xM
. . .

1

Figure 6. Example of relative positions of the points

Let us denote Ja(f)(x) =
∫ x

a f(u) du then we write the composition J
(2)
a (f)(x) =

∫ x

a

∫ u

a
f(v) dv du. We also denote m = m12 + 1 and n = m12 +m1 + 1, then we

have:

A =

∫ 1

0

J
(m12−2)
0 (1)(x2)

∫ 0

x2−1

−J
(m1−1)
xm+1 (1)(xm)

∫ 1

xm+1

J
(m2−1)
xn−1 (1)(xn) dxn dxm dx2.

We easily find that:

J
(m12−2)
0 (1)(x2) =

xm12−2
2

(m12 − 2)!
,

−J
(m1−1)
xm+1 (1)(xm) =

1

(m1 − 1)!
,

J
(m2−1)
xn−1 (1)(xn) =

1

(m2 − 1)!
.

Thus we have:

A =
1

(m12 − 2)!(m1 − 1)!(m2 − 1)!

∫ 1

0

xm12−2
2

∫ 0

x2−1

−xm dxm dx2

=
1

(m1 − 1)!(m2 − 1)!(m12 + 1)!
,

concluding the proof. �

Theorem 19. Let ǫ ≤ a/6. Then, the covariance between the number of (k − 1)-
simplices, Nk, and the number of (l − 1)-simplices, Nl, for l ≤ k is given by

(10) Covλ [Nk, Nl]

=

l−1∑

i=0

1

i!(k − l + i)!(l − i)!
(λ(2ǫ)d)k+i

( a

2ǫ

)d
(

k + i + 2
i(k − l + i)

l − i+ 1

)d

.

Proof. We want to evaluate Eλ [(Nk −Eλ [Nk])(Nl −Eλ [Nl])]. By Lemma 17, this
can be written as

Eλ

[

1

k!

k∑

i=1

(
k

i

)

λk−iIi
(
fk
i

) 1

l!

l∑

i=1

(
l

i

)

λl−iIi
(
f l
i

)

]

,

where

fn
j =

∫

(Td
a)

j

h(v1, · · · , vn) dv1 . . . dvn−j .
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Using the isometry formula, given by Eq. (1), we have

Covλ [Nk, Nl] =
1

k!l!

l∑

i=1

(
k

i

)(
l

i

)

λk+l−2i
Eλ

[
Ii
(
fk
i

)
Ii
(
f l
i

)]

=
1

k!l!

l∑

i=1

(
k

i

)(
l

i

)

λk+l−2ii!〈fk
i f

l
i 〉L2(λ)◦i

=
l−1∑

i=0

1

i!(k − l + i)!(l − i)!
λk−l+2i〈fk

l−if
l
l−i〉L2(λ)◦(l−i) .(11)

Hence, we are reduced to compute

〈fk
j f

l
j〉L2(λ)◦(j) =

∫

(Td
a)

j

(
∫

(Td
a)

l−j

h(v1, · · · , vl) dvj+1 . . . dvl

∫

(Td
a)

k−j

h(v1, · · · , vk) dvj+1 . . . dvk

)

λ dv1 . . . λ dvj .

Since a > ǫ/6, we have

〈fk
j f

l
j〉L2(λ)◦(j) =

∫

[0,a]d
λ dv1

∫

([0,a]d)k−1

h(0, v2, · · · , vk)

× h(0, v2, · · · , vj , v′1, · · · , v′l−j) dv′l−j . . . dv′1 dvk . . . dvj+1λ dvj . . . λ dv2.

Moreover, if vi = (ui,1, · · · , ui,d) and v′i = (u′
i,1, · · · , u′

i,d) and we proceed to the
following substitutions:

ui,1 = 2ǫxi if 2 ≤ i ≤ j,

ui,1 = 2ǫyk−j if j + 1 ≤ i ≤ k,

u′
i,1 = 2ǫzi if 1 ≤ i ≤ l − j,

This results in a Jacobian (2ǫ)k+l−2i−1 and we recognize the integral to be exactely
J2(j, k − j, l − j) as defined in Definition 6. Thus, we have:

〈fk
j f

l
j〉L2(λ)◦(j) = λiad(2ǫ)k+l−2i−1 (J2(j, k − j, l − j))

d
.

Finally, using Eq. (9) and Eq. (11) gives the result. �

Remark. We remark that the possibility of writing Var(Nk) as Eq. (10) is due the
fact that we use the maximum norm. This simplifies the calculations since we can
treat each component individually. However, considering the Euclidean norm it
is still possible to find analytically a closed-form expression for Var(Nk), but its
calculation involves nasty integrals and a generic term cannot be found. When we
consider the Rips-Vietoris complex in T

2
a, the variance of the number of 1-simplices

and 2-simplices are given by:

Vλ [N2] =
( a

2ǫ

)2 (π

2
(4λǫ2)2 + π2(4λǫ2)3

)

,

and

Vλ [N3] =
( a

2ǫ

)2
(

(4λǫ)3
π

6

(

π − 3
√
3

4

)

+ (4λǫ2)4π

(

π2

2
− 5

12
− π

√
3

2

)

+(4λǫ2)5
π2

4

(

π − 3
√
3

4

)2


 ·
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Since we have an expression for the variance of the number of k-simplices, it is
possible to calculate one for the Euler characteristic.

Theorem 20. Let ǫ ≤ a/6. Then, the variance of the Euler characteristic in a d
torus is:

Vλ [χ] =
( a

2ǫ

)d ∞∑

n=1

cdn(λ(2ǫ)
d)n,

where

cdn =
n∑

j=⌈(n+1)/2⌉



2

j
∑

i=n−j+1

(−1)i+j

(n− j)!(n− i)!(i+ j − n)!

(

n+
2(n− i)(n− j)

1 + i+ j − n

)d

− 1

(n− j)!2(2j − n)!

(

n+
2(n− j)2

1 + 2j − n

)d
]

.

Proof. The variance of χ is given by:

Vλ [χ] = Eλ

[
(χ−Eλ [χ])

2
]
= Eλ





(
∞∑

k=1

(−1)kNk −
∞∑

k=1

(−1)kEλ [Nk]

)2




= Eλ





(
∞∑

k=1

(−1)k(Nk −Eλ [Nk]

)2




= Eλ





∞∑

i=1

∞∑

j=1

(−1)i+j(Ni −Eλ [Ni])(Nj −Eλ [Nj ])



 .

We remark that Ni ≤ Ni
1

i! , so there is a constant c such that

Eλ





∞∑

i=1

∞∑

j=1

|(Ni −Eλ [Ni])(Nj −Eλ [Nj ])|



 ≤
∞∑

i=1

∞∑

j=1

∣
∣
∣
∣
∣

N i
1

i!

N j
1

j!

∣
∣
∣
∣
∣
≤ cEλ [e

n1 ]
2
< ∞.

Thus the alternating serie converges absolutely allowing us to exchange the mean
with the sums and we can write

Vλ [χ] =

∞∑

i=1

(−1)i
∞∑

j=1

(−1)jCovλ [Ni, Nj] .

The result follows by Eq. (10) and some tedious but straightforward algebra. �

Lemma 21. Let n be a positive integer, then
n∑

j=1

(
n

j

)((
j − 1

n− j − 1

)

−
(
j − 1

n− j

))

= (−1)n.

Proof. We first simplify the expression:
n∑

j=1

(
n

j

)((
j − 1

n− j − 1

)

−
(
j − 1

n− j

))

=

n∑

j=1

2n− 3j

j

(
n

j

)(
j

n− j

)

,

Then, applying hypergeometric functions, we solve the sum:
n∑

j=1

2n− 3j

j

(
n

j

)(
j

n− j

)

= (−1)n.

�
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Theorem 22. In one dimension, the expression of the variance of the Euler char-
acteristic is:

Vλ [χ] = a
(
λe−2λǫ − 4λ2ǫe−4λǫ

)
.

Proof. If d = 1, according to Theorem 20:

Vλ [χ] =
a

2ǫ

∞∑

n=1

c1n(2λǫ)
n,(12)

and we define

αn =

n∑

j=⌈ n+1
2 ⌉



2

j
∑

i=n−j+1

(−1)i+jn

(n− j)!(n− i)!(i + j − n)!
− n

(n− j)!2(2j − n)!



 .

and βn = c1n − α. It is well known that

2j−n
∑

i=0

(−1)i
(
j

i

)

= (−1)2j−n−1

(
j − 1

2j − n

)

,

using Stiffel’s relation, we obtain:

αn = (−1)n
n

n!

n∑

j=⌈ n+1
2 ⌉

[(
n

j

)

2

2j−n
∑

i=0

(−1)i
(
j

i

)

+ 2(−1)n
(
n

j

)]

=
1

(n− 1)!

n∑

j=⌈n+1
2 ⌉

[

2

(
n

j

)(
j − 1

n− j − 1

)

−
(
n

j

)(
j

n− j

)

− 2(−1)n
(
n

j

)]

=
1

(n− 1)!

n∑

j=⌈n+1
2 ⌉

[(
n

j

)((
j − 1

n− j

)

−
(

j − 1

n− j − 1

))

− 2(−1)n
(
n

j

)]

.(13)

The identity
(
n
j

)
=
(

n
n−j

)
allows us to write that

n∑

j=⌈(n+1)/2⌉

(−2(−1)n)

(
n

j

)

=

n∑

j=0

(
n

j

)

= 2n, n odd,

n∑

j=⌈(n+1)/2⌉

(−2(−1)n)

(
n

j

)

=

(
n

n/2

)

+

n∑

j=0

−
(
n

j

)

= −2n +

(
n

n/2

)

, n even.

Since
(
j−1
n−j

)
= 0 for j <

⌈
n+1
2

⌉
, we have

n∑

j=⌈ n+1
2 ⌉

(
n

j

)((
j − 1

n− j

)

−
(

j − 1

n− j − 1

))

=
n∑

j=1

(
n

j

)((
j − 1

n− j

)

−
(

j − 1

n− j − 1

))

for n odd and

n∑

j=⌈n+1
2 ⌉

(
n

j

)((
j − 1

n− j

)

−
(

j − 1

n− j − 1

))

= −
(

n

n/2

)

+

n∑

j=1

(
n

j

)((
j − 1

n− j

)

−
(

j − 1

n− j − 1

))

.
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for n even. According to Lemma 21, we get:

n∑

j=⌈(n+1)/2⌉

(
n

j

)[(
j − 1

n− j − 1

)

−
(
j − 1

n− j

)]

= −1, n odd,

n∑

j=⌈(n+1)/2⌉

(
n

j

)[(
j − 1

n− j − 1

)

−
(
j − 1

n− j

)]

= 1−
(

n

n/2

)

, n even.

Then, we substitute these two last expressions in Eq. (13) to obtain

αn = (−1)n
(1 − 2n)1[n≥1]

(n− 1)!
,

and thus

∞∑

i=0

αnx
n = −xe−x + 2xe−2x.

Proceeding along the same line, βn is given by

βn =

n∑

j=⌈ n+1
2 ⌉



2

j
∑

i=n−j+1

(−1)i+j2(n− i)(n− j)

(n− j)!(n− i)!(i + j − n+ 1)!

− 2(n− j)2

(n− j)!2(2j − n+ 1)!

]

= (−1)n
(
(−2 + 2n)1[n≥1]

(n− 1)!
− 21[i≥2]

(i− 2)!

)

,

and again we can simplify the power serie
∑∞

i=0 βnx
n:

∞∑

i=0

βnx
n = 2xe−x − 2(x+ x2)e−2x.

Then, substituting αn and βn in Eq. (12) yields the result. �

Theorem 23. We have Dχ ≤ 2 and ‖Dχ‖L∞(Ω,L2(Td
a))

< ∞ and

P(χ− χ̄ ≥ x) ≤ exp

(

−x

4
log

(

1 +
2x

Vλ [χ]

))

.

Proof. In two dimensions, the Euler characteristic is:

χ = β0 − β1 + β2.

Therefore we can bound Dχ by the variation of β0 − β1 added to the variation of
β2 when we add a vertex to a simplicial complex.

If we add a vertex on the torus, either the vertex is isolated or not. In the first
case, it forms a new connected component incrementing β0 by 1, and the number
of holes that is β1 is the same. Otherwise, as there is no new connected component,
β0 is the same, but the new vertex can at most fill a hole incrementing β1 by 1.
Therefore, the variation of β0 − β1 is at most 1.

Now, let us look at the variation of β2 when we add a vertex to a simplicial
complex. According to Proposition 3 is at most 1, showing that Dχ ≤ 2. Then, we
use Eq. (4) to complete the proof. �
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6. Nth order moments

For this section, without loss of generality, using Proposition 9, we can choose
k = 1/2ǫ, so λτ = λ(2ǫ)d, ǫτ = 1/2 and ak = a/2ǫ.

We are interested in the central moment, so we introduce the following notation
for the centralized number of (k − 1)-simplices: Ñk = Nk − N̄k.

Finally, let us denote that
(
i
j

)
= 0 as soon as i ≤ 0 or j ≤ 0 or i − j ≤ 0 for i

and j integers.

Definition 7. We extend the Definition 6 used in the second order moments cal-
culations.

Let C1, C2 and C3 be three simplices with common vertices. For L ∈ P({1, 2, 3}),
let us denote mL the number of vertices belonging exactly to the list L of simplices.

Then M = m123 + m12 + m13 + m23 + m1 + m2 + m3 is the total number of
vertices and J3 represents the integral on these three simplices:

J3 =

∫

∆p1

∫

∆p2

∫

∆p3

hp1hp2hp3 dx1 . . . dxM .

with pi being the number of vertices of simplex Ci for i = 1, · · · , 3, for instance
p1 = m123 +m12 +m13 +m1, and x1, · · · , xM being the M vertices.

Definition 8. We denote J3(i, j, s, t) the integral defined above such that

• m123 = 2t− i− j + s ∨ 0
• m12 = i+ j − s− t ∨ 0
• m13 = i− t ∨ 0
• m23 = j − t ∨ 0
• m1 = k − i ∨ 0
• m2 = k − j ∨ 0
• m3 = k − s ∨ 0.

Theorem 24. The third moment of the number of (k − 1)-simplices is given by:

Eλ

[

Ñk
3
]

=
∑

i,j,s,t

λ3k−i−j t!

(
k

i

)(
k

j

)(
k

s

)(
i

t

)(
j

t

)(
t

i+ j − s− t

)

J3(i, j, s, t),

with s ≥ |i− j|.

Proof. The chaos decomposition of the number of (k − 1)-simplices is as shown in
lemma 17:

Ñk = I1(f1) + · · ·+ Ik(fk) =

k∑

i=1

Ii(fi),

with

fi(x1, · · · , xi) =

(
k

i

)∫

h(x1, · · · , xk)λ
k−i dxk . . . dxi+1,

And

Ii(fi) =

∫

fi( dω(x1)− dλ(x1)) . . . ( dω(xi)− dλ(xi)).
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Then, we define gi,j,i+j−s =
∑i+j−s∧i∧j

t=⌈ i+j−s
2 ⌉

t!
(
i
t

)(
j
t

)(
t

i+j−s−t

)
fi ◦u−t

t fj and using the

chaos expansion (cf Proposition 6):

Ñk
3

= (I1(f1) + · · ·+ Ik(fk))
3

=





k∑

i=1

k∑

j=1

Ii(fi)Ij(fj)



 (I1(f1) + · · ·+ Ik(fk))

=

k∑

i,j=1

i+j
∑

s=|i−j|

Is(gi,j,i+j−s)(I1(f1) + · · ·+ Ik(fk))

=

k∑

i,j,l=1

i+j
∑

s=|i−j|

Is(gi,j,i+j−s)Il(fl).

When taking the expectation of Ñk, we use the isometry formula in Eq. (1). De-
noting u = i+ j − s, we obtain:

Eλ

[

Ñk
3
]

= Eλ





k∑

i,j=1

i+j∧k
∑

s=|i−j|∨1

Is(gi,j,u)Is(fs)





=
k∑

i,j=1

i+j∧k
∑

s=|i−j|∨1

∫

gi,j,ufsλ
s dx1 . . . dxs

=

k∑

i,j=1

i+j∧k
∑

s=|i−j|∨1

u∧i∧j
∑

t=⌈ u
2 ⌉

λst!

(
i

t

)(
j

t

)(
t

u− t

)∫

(fi ◦u−t
t fj)fs dx1. . . dxs.

Then we recognize the integral defined in Definition 8:

Eλ

[

Ñk
3
]

=

k∑

i,j,=1

i+j∧k
∑

s=|i−j|∨1

u∧i∧j
∑

t=⌈u
2 ⌉

λ3k−i−j t!

(
k

i

)(
k

j

)(
k

s

)(
i

t

)(
j

t

)(
t

u− t

)

J3(i, j, s, t).

Finally, relaxing the boundaries on the sums conclude the proof. �

Definition 9. Let C1, · · · , Cn be n simplices with common vertices. For L ∈
P({1, · · · , n}), let us denote mL the number of vertices belonging exactly to the
list L of simplices.

Then M =
∑

L∈P({1,··· ,n})mL is the total number of vertices and Jn represents

the integral on these n simplices:

Jn =

∫

∆p1

· · ·
∫

∆pn

hp1 . . . hpn dx1 . . . dxM .

with pi being the number of vertices of simplex Ci for i = 1, · · · , n, and x1, · · · , xM

being the M vertices.

Theorem 25. The expression of the nth power of the number of (k − 1)-simplices
is given by:

(14) Ñn
k =

∑

i1,··· ,in

∑

s1,···sn−2

∑

t1,···tn−2





n−2∏

j=1

tj !

(
mj,1

tj

)(
mj,2

tj

)(
tj

uj − tj

)




Ia(◦j∈Afij )Ib(◦j∈Āfij ).

With for j ∈ {1, · · · , n− 2}:



24 L. DECREUSEFOND, E. FERRAZ, H. RANDRIAMBOLOLONA, AND A. VERGNE

• 1 ≤ i1, · · · , in ≤ k,
• sj ≥ |mj,1 −mj,2|,
• mj,1 = i2j−1 if 1 ≤ j ≤ ⌊n

2 ⌋ and s2(j−⌊n
2 ⌋)−1 otherwise,

• mj,2 = i2j if 1 ≤ j ≤ ⌊n
2 ⌋ and s2(j−⌊n

2 ⌋) otherwise,
• uj = mj,1 +mj,2 − sj,
• A ⊂ {1, · · · , n},
• If n is even, then a = sn−3 and b = sn−2,
• If n is odd, then a = sn−2 and b = in.

Proof. The decomposition of the centralized number of (k − 1)-simplices is:

Ñk = I1(f1) + · · ·+ Ik(fk) =

k∑

i=1

Ii(fi).

Now, we raise Ñk to the nth power:

Ñk
n
=

(
k∑

i=1

Ii(fi)

)n

.

First, we consider the case where n is even, we can group the factors by 2:

Ñn
k =

(
k∑

i1=1

Ii1(fi1)

k∑

i2=1

Ii2 (fi2)

)

. . .





k∑

in−1=1

Iin−1(fin−1)

k∑

in=1

Iin(fin)



 .

We then use the chaos expansion of Proposition 6:

Ii(fi)Ij(fj) =

2(i∧j)
∑

s=0

Ii+j−s




∑

s≤2t≤2(s∧i∧j)

t!

(
i

t

)(
j

t

)(
t

s− t

)

fi ◦s−t
t fj





=

i+j
∑

s=|i−j|

Is




∑

i+j−s≤2t≤2(i+j−s)∧i∧j)

t!

(
i

t

)(
j

t

)(
t

i+ j − s− t

)

fi ◦i+j−s−t
t fj



 .

Let us denote gs = t!
(
i
t

)(
j
t

)(
t

i+j−s−t

)
fi ◦i+j−s−t

t fj, so we can re-write, relaxing the

boundaries on the sums:

Ii(fi)Ij(fj) =
∑

s≥|i−j|

∑

t

Is(gs).

Thus, we have:

Ñn
k =

k∑

i1,i2=1

∑

s1≥|i1−i2|

∑

t1

Is1(gs1) · · ·
k∑

in−1,in=1

∑

sn/2≥|in−1−in|

∑

tn/2

Isn/2
(gsn/2

).

We go on grouping terms by 2 until we only have a product of 2 chaos left: First we
made n/2 chaos expansions, leading to n/2 sums with indexes sj, j = 1, · · · , n/2.
To reduce the number of chaos to 2, we have to make other chaos expansions. For
j ≥ n

2 + 1, the sum indexed by sj represents the expansion of the chaos indexed
s2(j− n

2 )−1 and s2(j− n
2 )−1. We have 2 chaos remaining when j = 2(j − n

2 ) + 2, i.e.
when j = n− 2.

Moreover, there are as much sums indexed with tj as with sj , that is n−2. Thus
we can write:

Ñn
k =

k∑

i1,··· ,in=1

∑

s1,···sn−2

∑

t1,···tn−2

Isn−3(φsn−3)Isn−2(φsn−2),

With sj ≥ |mj,1 −mj,2| for j ∈ {1, · · · , n− 2} if we denote:
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• mj,1 = i2j−1 if 1 ≤ j ≤ n
2 and s2(j−n

2 )−1 otherwise,
• mj,2 = i2j if 1 ≤ j ≤ n

2 and s2(j−n
2 ) otherwise.

Then, denoting uj = mj,1 +mj,2 − sj and A the subset of {1, · · · , n} such that if
j ∈ A then the chaos ij is expanded in the chaos sn−3, we have:

Isn−3(φsn−3)Isn−2(φsn−2) =




n−2∏

j=1

tj !

(
mj,1

tj

)(
mj,2

tj

)(
tj

uj − tj

)


 Isn−3(◦j∈Afij )Isn−2 (◦j∈Āfij ).

The notation ◦j∈Afij represents the product defined in Eq. (3) of the functions
fij for j ∈ A, but whom variables depend on all the i1, · · · , in, s1, · · · , sn−2, and
t1, · · · , tn−2.

Now, if n is odd, we consider n− 1 which is even, therefore we have:

Ñn
k =

k∑

i1,··· ,in−1=1

∑

s1,··· ,sn−3

∑

t1,··· ,tn−3

Isn−4(φsn−4)Isn−3(φsn−3)

k∑

in=1

Iin(fin)

=

k∑

i1,··· ,in=1

∑

s1,··· ,sn−2

∑

t1,··· ,tn−2

Isn−2(φsn−2)Iin (fin),

with sj ≥ |mj,1 −mj,2| for j ∈ {1, · · · , n − 2} using the same notations for n − 1
instead of n:

• mj,1 = i2j−1 if 1 ≤ j ≤ n−1
2 and s2(j−n−1

2 )−1 otherwise,

• mj,2 = i2j if 1 ≤ j ≤ n−1
2 and s2(j−n−1

2 ) otherwise.

And with uj = mj,1 +mj,2 − sj ,

Isn−2(φsn−2) =





n−2∏

j=1

tj !

(
mj,1

tj

)(
mj,2

tj

)(
tj

uj − tj

)


 Isn−2(◦j∈{1,··· ,n−1}fij ),

concluding the proof. �

Theorem 26. The expression of the nth moment of the number of (k−1)-simplices
is given by:

Eλ

[

Ñk
n
]

=
∑

i1,··· ,in

∑

s1,··· ,sn−3

∑

t1,··· ,tn−2

λnk+c





n∏

j=1

λ−ij

(
k

ij

)








n−2∏

j=1

tj !

(
mj,1

tj

)(
mj,2

tj

)(
tj

uj − tj

)


Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2).

With for j ∈ {1, · · · , n− 2}:
• if j ≤ n− 3, sj ≥ |mj,1 −mj,2|,
• mj,1 = i2j−1 if 1 ≤ j ≤ ⌊n

2 ⌋ and s2(j−⌊n
2 ⌋)−1 otherwise,

• mj,2 = i2j if 1 ≤ j ≤ ⌊n
2 ⌋ and s2(j−⌊n

2 ⌋) otherwise,
• mj,3 = sj if 1 ≤ j ≤ n− 3 and sn−3 otherwise,
• uj = mj,1 +mj,2 −mj,3,
• If n is even, then c = sn−3 and

sn−3 ≥ |mn−2,1 −mn−2,2| ∨ |mn−3,1 −mn−3,2|,
• If n is odd, then c = in and in ≥ |mn−2,1 −mn−2,2|.
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Proof. The expression of the nth power of the number of (k − 1)-simplices is given
in Eq. (14):

Ñn
k =

k∑

i1,··· ,in=1

∑

s1,··· ,sn−2

∑

t1,··· ,tn−2





n−2∏

j=1

tj !

(
mj,1

tj

)(
mj,2

tj

)(
tj

uj − tj

)




Ia(◦j∈Afij )Ib(◦j∈Āfij ).

If n is even, we have:

Ñn
k =

k∑

i1,··· ,in=1

∑

s1,··· ,sn−2

∑

t1,··· ,tn−2





n−2∏

j=1

tj !

(
mj,1

tj

)(
mj,2

tj

)(
tj

uj − tj

)




Isn−3(◦j∈Afij )Isn−2 (◦j∈Āfij ).

So let us focus on the only part of the equation which is likely to change when we
take the expected value, that we will denote:

K =
∑

sn−3

∑

sn−2

Isn−3(◦j∈Afij )Isn−2(◦j∈Āfij ).

We then use the property of Eq. (1) and recognize the integral from Definition 9:

Eλ [K] =
∑

sn−3





n∏

j=1

λk−ij

(
k

ij

)


λsn−3Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2)

=
∑

sn−3

λnk+sn−3





n∏

j=1

λ−ij

(
k

ij

)


Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2),

with sn−3 ≥ |mn−2,1 −mn−2,2| ∨ |mn−3,1 −mn−3,2|.
Then for n odd we directly write:

K ′ =
∑

in

∑

sn−2

Iin(◦j∈Ifij )Isn−2(◦j∈Īfij ),

Eλ [K
′] =

∑

in

λnk+in





n∏

j=1

λ−ij

(
k

ij

)


Jn(i1, · · · , in, s1, · · · , sn−3, t1, · · · , tn−2),

with in ∈ {|mn−2,1 −mn−2,2| ∨ 1, k}.
The binomials with the ij allow us to relax the boundaries on the sums on ij ,

concluding the proof. �

7. Convergence

Let Γ be an arbitrary connected simplicial complex containing n points and X
be a random simplicial complex in a compact set B generated by the Poisson point
process ω. The number of occurrences of Γ in X is denoted as GΓ. In what follows,
we denote by Vλ [X ] the variance of the random variable X under the probability
distribution Pλ. In this section, c is a constant which may vary from line to line
and may depend on everything but λ.

Lemma 27. The random variable GΓ has a chaos representation given by:

GΓ =

n∑

i=0

Ii(fi),

where fi is a bounded symetric function.
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Proof. Let k be the number of 1-simplices of the connected simplicial complex GΓ

and Jk be the set of the k couples of indices such that if (i, j) ∈ Jk, then the points
xi and xj form an 1-simplex. Let

h̃(x1, · · · , xn) =
1

cΓ

∏

(i,j)∈Jk

1[‖xi−xj‖≤ǫ],

where cΓ is the number of permutations of {x1, · · · , xn} such that

h̃(x1, · · · , xn) = h̃(xσ(1), · · · , xσ(n)),

and let f(x1, · · · , xn) be the symetrization of h̃(x1, · · · , xn). This means that

GΓ =
∑

x1,··· ,xn∈ω
xi 6=xjifi6=j

f(x1, · · · , xn) =

∫

∆n

f(x1, · · · , xn) dω(x1) · · · dω(xn).

Using the binomial expansion and some algebra, we obtain

GΓ =

n∑

i=0

∫

∆i






(
n

i

) ∫

∆n−i

f(x1, · · · , xn)λ dx1 . . . λ dxn−i






( dω(xn−i+1)− λ dxn−i+1) . . . ( dω(xn)− λ dxn).

We define, for any i ∈ {1, · · · , n},

fi(xi+1, · · · , xn) =

(
n

i

)

λn−i

∫

Bn−i

f(x1, · · · , xn) dx1 . . . dxn−i

and to conclude the proof, we note that, since B is a compact set and h is bounded,
fi is bounded. �

Lemma 28. For any Γ connected simplicial complex containing n points, for λ
large enough,

Eλ [GΓ] ≤ cλn and Vλ [GΓ] ≤ P 2n−1
Γ (λ).

where P 2n−1
Γ (λ) is a polynomial on λ of degree 2n− 1 depending on Γ.

Proof. Using 27 and the chaos properties, we obtain

Eλ [GΓ] = λn

∫

∆n

f(x1, · · · , xn) dx1 . . . dxn ≤ cλn,

since f is bounded. Furthermore,

Vλ [GΓ] =
n∑

i=1

i!‖fi‖2L2(B,λ)

=

n∑

i=1

i!

∫

∆i



λn−i

(
n

i

) ∫

Bn−i

f(x1, · · · , xn) dx1 . . . dxn−i





2

λ dx1 . . . λ dxi

=

n∑

i=1

i!λ2n−i

∫

∆i





(
n

i

) ∫

Bn−i

f(x1, · · · , xn) dx1 . . . dxn−i





2

dx1 . . . dxi.

and since f is bounded, Vλ [GΓ] is a polynomial of degree 2n− 1. �

Lemma 29. For λ large enough, if k > 1,

Eλ

[
(Ik(1))

2
]
< cλ2k−1,

and Eλ

[
(Ik(1))

2
]

is constant if k = 0.
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Proof. The proof is trivial for the case k = 0. If k ≥ 1, for i ≤ k we have
∫

∆i

dω(x1) . . . dω(xi) =

i−1∏

j=0

(ω(B)− j),

so we can rewrite Ik(1) as follows:

Ik(1) =

k∑

i=0





(
k

i

)

(−λS(B))i
k−i−1∏

j=0

(ω(B)− j)



 .

Thus, Eλ

[
(Ik(1))

2
]

can be written as

Eλ

[
(Ik(1))

2
]
= Eλ



(ω(B)− λS(B))2k +
∑

2≤i+j≤2k−1

ci,jω(B)i(λS(B))j



 ,

where the ci,j are integer constants.
If we differentiate the k-th central moment

E[(N − λ′)k] =
∞∑

i=0

(r − λ′)ke−λ′ (λ′)i

i!

of a random variable N distributed as Poisson with mean λ′, with respect to λ′ we
find the following recurrence:

E[(N − λ′)k+1] = λ′

(
dE[(N − λ′)k]

dλ′
+ kE[(N − λ′)k−1]

)

.

Hence, using induction we can show that E[(N − λ′)k] is a polynomial on λ with
maximum degree ⌊k/2⌋, for k > 1. Since Eλ

[
ω(B)i

]
is the Bell Polynomial of

degree i on λ, it follows straightforwardly that the polynomial

Eλ




∑

2≤i+j≤2k−1

ci,jω(B)i(λS(B))j





has degree at most 2k − 1, and the proof is thus complete. �

Definition 10. Let fi, gj and hk be, respectively, functions of i-th, j-th and k-th
chaos of the Wiener-Poisson decomposition of some square integrable function of
ω. For 0 ≤ s ≤ 2(n ∧m), we define

fi ⋆s gj =
∑

s≤2n≤2(s∧i∧j)

n!

(
i

n

)(
j

n

)

fi ◦s−n
n gj.

For 0 ≤ r ≤ 2((i+ j − s) ∧ k), we abuse of the notation to write

hk ⋆r (fn ⋆s gm) = hk ⋆r fn ⋆s gm.

Lemma 30. If |fn(x1, · · · , xn)| is bounded by a positive real c, then

Eλ

[
In(fn)

2
]
≤ c2Eλ

[
In(1)

2
]
.

Proof. We use the isometry formula given by Eq. (2), so

Eλ

[
In(fn)

2
]

= n!‖fn‖L2(λ)◦n

= n!

∫

Bn

f2
n(x1, · · · , xn)λ dx1 . . . λ dxn

≤ n!

∫

Bn

c2λ dx1 . . . λ dxn

= c2Eλ

[
In(1)

2
]
,

and the proof is complete. �
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Theorem 31. Let F = GΓ−Eλ[GΓ]√
Vλ[GΓ]

, then, for λ large enough,

∫

B

Eλ

[
|DtF |2|DtL

−1F |
]
λ dt ≤ c

λ1/2
·

Proof. Provided that GΓ has n points, Lemma 27 shows that GΓ =
∑n

i=0 In(fn),
so

DtF =
1

√

Vλ [GΓ]

n∑

i=1

iIi−1(fi(∗, t)),

DtL
−1F =

1
√

Vλ [GΓ]

n∑

i=1

Ii−1(fi(∗, t)).

Let us define

gi−1 =
fi(∗, t)
λn−i

·

According to Eq. (7), we note that gi does not depend on λ. Using the triangular
inequality, we have

|DtF |2|DtL
−1F | ≤

n−1∑

i,j,k=0

λ3n−3−i−j−k(i + 1)(j + 1)

Vλ [GΓ]
3
2

|Ii(gi)Ij(gj)Ik(gk)|.

Then, we apply twice the chaos expansion and use again the triangular inequality
to obtain:

|DtF |2|DtL
−1F | ≤

n−1∑

i,j,k=0

2(i∧j)
∑

s=0

2((i+j−s)∧k)
∑

r=0

λ3n−3−i−j−k(i + 1)(j + 1)

Vλ [GΓ]
3
2

×

|Ii+j+k−s−r(gi ⋆r gj ⋆s gk)|,
Since fi is bounded, gi is bounded as so gi ⋆r gj ⋆s gk for i, j, k, r, s in the range of
their indexes above. We define

c(i, j, k, r, s) = sup{gi ⋆r gj ⋆s gk}(i+ 1)(j + 1),

and we use Jensen’s inequality and Lemma 30 to write

Eλ

[
|DtF |2|DtL

−1F |
]

≤
n−1∑

i,j,k=0

2(i∧j)
∑

s=0

2((i+j−s)∧k)
∑

r=0

λ3n−3−i−j−k

Vλ [GΓ]
3
2

Eλ

[
(Ii+j+k−s−r(gi ⋆r gj ⋆s gk))

2
] 1

2

≤
n−1∑

i,j,k=0

2(i∧j)
∑

s=0

2((i+j−s)∧k)
∑

r=0

λ3n−3−i−j−kc(i, j, k, r, s)

Vλ [GΓ]
3
2

Eλ

[
(Ii+j+k−s−r(1))

2
] 1

2 .

Using Lemmas 28 and 29 we obtain:

∫

B

Eλ

[
|DtF |2|DtL

−1F |
]
λ dt ≤

n−1∑

i,j,k=0

2(i∧j)
∑

s=0

2((i+j−s)∧k)
∑

r=0

c(i, j, k, r, s)×

λ3n−3−i−j−k

Vλ [GΓ]
3
2

Eλ

[
(Ii+j+k−s−r(1))

2
]1/2

∫

B

λ dt

≤ cλ3n−3

Vλ [GΓ]
3
2

∫

B

λ dt ≤ c

λ1/2
,

concluding the proof. �
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Theorem 32. Let

F =
GΓ −Eλ [GΓ]
√

V ar(GΓ)
·

Then, when λ is large enough

Eλ

[
|1− 〈DF,DL−1F 〉L2(λ)|

]
≤ c

λ1/2
,

for some constant c.

Proof. The expressions of DtF and DtL
−1F are given by

DtF =
1

√

Vλ [GΓ]

n∑

i=1

iIi−1(fi(∗, t)),

and

DtL
−1Z =

1
√

Vλ [GΓ]

n∑

i=1

Ii−1(fi(∗, t)).

The inner product 〈DtL
−1F,DtF 〉L2(λ) is expressed by:

〈DtL
−1F,DtF 〉L2(λ) =

1

Vλ [GΓ]

∫

B

n∑

i,j=1

iIi−1(fi(∗, t))Ij−1(fj(∗, t))λ dt.

Then,

〈DtL
−1Z,DtZ〉L2(λ) =

1

Vλ [GΓ]

n∑

i,j=1

i

∫

B

Ii−1(fi(∗, t))Ij−1(fj(∗, t))λ dt

=
1

Vλ [GΓ]

∫

B

I0(f1(t)
2λ dt

+
1

Vλ [GΓ]

n∑

i,j=1
(i,j) 6=(1,1)

i

∫

B

Ii−1(fi(∗, t))Ij−1(fj(∗, t))λ dt.

Defining gi−1 as in Theorem 31 and using the chaos expansion, we get:

〈DtL
−1F,DtF 〉L2(λ) =

‖f1‖2L2(λ)

Vλ [GΓ]
+

1

Vλ [GΓ]

n∑

i=2

i(i− 1)!

∫

B

‖fn(∗, t)‖2L2(λ) λ dt

+

n−1∑

i=1

(i + 1)
λ2n−2i−2

Vλ [GΓ]

∫

B

2(i−1)
∑

s=0

I2i−s(gi ⋆s gi)λ dt

+
n−1∑

i,j=0

(i+ 1)
λ2n−i−j−2

Vλ [GΓ]

∫

B

2(i∧j)
∑

s=0

Ii+j−s(gi ⋆s gj)λ dt.

Since
∫

B

‖fi(∗, t)‖2L2(λ) λ dt =

∫

B

(∫

Bi−1

f2
i (t1, · · · , ti−1, t)λ dt1 . . . λ dti−1

)

λ dt

=

∫

Bi

f2
i (t1, · · · , ti−1, t)λ dt1 . . . λ dti−1λ dt

= ‖fi‖L2(λ) ,

and given the isometry formula

Vλ [GΓ] = ‖GΓ‖L2Ω −Eλ [GΓ]
2

=
∑

i=0

n!‖fi‖2L2(Bi) − ‖f0‖2 =
∑

i=1

n!‖fi‖2L2(λ),
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we have

‖f1‖2L2(λ)

Vλ [GΓ]
+

1

Vλ [GΓ]

n∑

i=2

i(i− 1)!

∫

B

‖fi(∗, t)‖2L2(λ) λ dt = 1.

Hence

〈DtL
−1Z,DtZ〉L2(λ) = 1 +

n−1∑

i,j=0
(i,j) 6=(1,1)

2(i∧j)
∑

s=0
s6=2i if i=j

(i + 1)
λ2n−i−j−2

Vλ [GΓ]

∫

B

Ii+j−s(gi ⋆s gj)λ dt.

Let c(i, j, s) be defined as

c(i, j, s) = sup{gi ⋆s gj}(i+ 1).

Then, we use the triangular inequality, Jensen’s inequality and Lemma 30 to obtain:

Eλ

[
|1− 〈DF,DL−1F 〉L2(λ)|

]

≤ Eλ

[
n−1∑

i,j=0
(i,j) 6=(1,1)

2(i∧j)
∑

s=0
s6=2i if i=j

(i+ 1)
λ2n−i−j−2

Vλ [GΓ]

∫

B

|Ii+j−s(gi ⋆s gj)|λ dt

]

≤
n−1∑

i,j=0
(i,j) 6=(1,1)

2(i∧j)
∑

s=0
s6=2i if i=j

(i+ 1)λ2n−i−j−2

Vλ [GΓ]

∫

B

Eλ

[
(Ii+j−s(gi ⋆s gj))

2
] 1

2 λ dt

≤
n−1∑

i,j=0
(i,j) 6=(1,1)

2(i∧j)
∑

s=0
s6=2i if i=j

c(i, j, s)
λ2n−i−j−2

Vλ [GΓ]
Eλ

[
(Ii+j−s(1))

2
]1/2

∫

B

λ dt.

Finally, using Lemmas 29 and 28, there is a constant c such that:

Eλ

[
|1− 〈DF,DL−1F 〉L2(λ)|

]
≤ c

λ1/2

for λ large enough. �

Theorem 33. There exists a constant c such that, for λ large enough, the Wasser-

stein distance between F = GΓ−Eλ[GΓ]√
V ar(GΓ)

and N (0, 1) is given by:

dW (F,N (0, 1)) ≤ c

λ1/2
·

Proof. The proof comes straightforwardly from Theorem 3.1 as stated in [16]:

dW (F,N (0, 1)) ≤ Eλ

[
|1− 〈DF,DL−1F 〉L2(λ)|

]
+

∫

B

Eλ

[
|DtF |2|DtL

−1F |
]
λ dt,

which we can use since fn is bounded, so F ∈ DomD. We use theorems 31 and 32
in the first and second terms, respectively.

�

8. Discussion and Conclusion

Through this work, we successfully obtained the moments of the number of
high order interactions, named simplices, and the two first order moments of the
Euler characteristic. The assumptions are quite reasonable and are justified for real
systems. The randomness of the positions reflect the lack of capacity of choosing the
position where they are deployed, while the randomness of the number of sensors
comprises various random factors that can happens with a sensor that suppose to
be in the target region (for instance, the sensor can fall outside the region or can
shut off due the lack of energy). The fact that they fall over a torus, can be justified
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if we consider that we can warrant a total coverage in the box [0, a]d if the Euler
characteristic is zero in the Torus, which would not be possible to find if we consider
that points fall directly over [0, a]d. Besides, the behavior in the torus or in the
box is close from each other when we consider small cover of each point. We could
criticize the use of the maximum norm, which is not physically realistic, but this
norm allows us to find closed form formulas results and can represent bounds for
the Euclidean one. If Eλ [N

′
k] and Eλ [χ

′] represent, respectively, the mean number
of k-simplices and the mean of the Euler characteristic, using the Euclidean norm
we obtain:

λk+1ad

(k + 1)!

(k + 1)d
(
(2ǫ)k

)d

√
d
d(k)

≤ Eλ [N
′
k] ≤

λk+1ad

(k + 1)!
(k + 1)d

(
(2ǫ)k

)d

(

a
√
d

2ǫ

)d

e−λ(2ǫ)d

(

−Bd

(

−λ
(2ǫ)d

√
d
d

))

≤ Eλ [χ
′] ≤

( a

2ǫ

)d

e−λ(2ǫ)d(−Bd(−λ(2ǫ)d))

From the properties obtained of the Euler characteristic mean and based in some
simulations, we conjecture that, in a random simplicial complex as defined in this
work, there is always two main kinds of holes in this complex, βi and βi+1. So,
for instance, consider figure 8 where points are placed in 5 dimensions. When λ
is small, in average, the components are isolated from the others, so β0 > 0 and
we do not have other kinds of holes, so β0 is the dominating Betti number. If λ is
increased (which means, in average, increase the number of points), the components
connect with each other, decreasing β0 and we begin to form the first cycles, so β0

and β1 are the dominating Betti numbers. Increasing λ even more, the complex
becomes completely connected and we have a large number of cycles. For λ even
larger, those cycles begin to vanish and we have the first voids. Then, we follow
this reasoning until all the region is completely covered and χ = 0.

Figure 7. Behavior of χ with respect to λ.
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