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Abstract—We consider stochastic cellular networks where base
stations locations form a homogenous Poisson point processand
each mobile is attached to the base station that provides the
best mean signal power. The mobile is in outage if the SINR
falls below some threshold. The handover decision has to be
made if the mobile is in outage for some time slots. The outage
probability and the handover probability is evaluated in taking
into account the effect of path loss, shadowing, Rayleigh fast
fading, frequency factor reuse and conventional beamforming.
The main assumption is that the Rayleigh fast fading changes
each time slot while other network components remain static
during the period of study.

I. I NTRODUCTION

In a wireless network, nodes can be modeled by fixed or
stochastic pattern of points on the plane. Fixed points model
can be finite or infinite and usually regular or lattice. This
approach fails to capture the irregularity and randomness of
a real network. For example, to model a wireless cellular
network, the hexagonal cellular network is the model of this
type most used. In reality, the base station (BS) nodes are
usually fixed, it is not true that they are spastically periodical.
Recently, stochastic model of nodes are more preferred. Node
patterns can be represented by a stochastic process on the
plane such as Poisson point process . It is worth to note that
the stochastic models, although are more complicated at the
first sight, usually lead to elegant and easy calculated formulas.
In fact, all information obtained when studying both types of
model are useful for the design or dimensioning processes of
networks. In this paper we choose the stochastic approach and
investigate a cellular network with homogeneous Poisson point
process of BS.

However most of works relies on the assumption that a
mobile once in the network is served by the nearest BS. This is
due to considering path loss exponent model of radio propaga-
tion and remove the effect of fading. This assumption results to
a so called Poisson-Voronoi cells model (for example, [2], page
63). Most works consider only the effect of fading but only
the slow fading such as log-normal shadowing or fast fading
such as Rayleigh fading. Besides, most of works consider the
well known exponent propagation model. In this paper, the
proposed model is sightly more general. Firstly, we consider
a general model of path loss. Secondly, we are interested in
a system spastically static but some temporal evolutionary
elements. More precisely, we include both random general

slow fading and Rayleigh fading but that the slow fading
being static in time, and the Rayleigh fading changes each
time slot. Thirdly, once considering this, we make a very
natural assumption that the mobile is served by the BS that
provides the most strong mean signal power in time (best
server). The mean signal power depends on path loss and
slow fading. This choice of serving BS can be made either
by the mobile or the operator. Thus, it can be though that our
model is a generalization of Poisson-Voronoi cell model. If
we assume that each BS generates an independent copy of a
continuous shadowing random such as the one in [12], one can
interpret continuous cell form. However if each slow fading
field generated by a BS is independent fading fields then the
cells can not be analytically identified, in particular theycan
not be measurable. We do not address this issue in this paper.
Nevertheless we make assumption that the slow fading value
of BSs to a mobile is independent, so including all above
cases.

Once the mobile is served by one BS, the signal received
by this BS will be the useful signal, and we assume that the
considered system other signal received by other BS using the
same frequency is interference. It is not true if we consider
for example an advanced system in which the base stations
are cooperative. However our model covers almost all existing
cellular networks. To model the frequency reuse, we add a
independent mark on our Poisson point process of BSs. A BS
interferes other BSs that have the same mark. In addition to
the interferences, the local noise can intervene. In order to
make communication with the BS, the signal-to-noise-plus-
interferences ratio (SINR) at this mobile location must be
excess some threshold, in this case the mobile is covered, in
contrary it is in outage. If the mobile is in outage during a
period of time, i.e for some consecutive time slots, a handover
decision has to be made. It can be made by the mobile, the
served BS, the network system or even by a neighbor BS. In
this paper, we are interested in the calculation of the outage
probability and the handover probability in explicit forms.
Since we assumes a homogenous Poisson point process of
BSs, but not fixed patterns, these results does not depend on
the position of the mobile and can be considered as global,
meaning on all MS on the network.

This present paper benefits from results in the literature. In
[9], Haenggi shows that the path loss fading process is Poisson
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point process in real line in the case of path loss exponent
model. In [1], [2] and [3], Baccelli and al. find analytical
expressions for outage probability of networks where each
node tries to connect with a destination of fixe distance or
the nearest node in case of Rayleigh fading. In [6], Kelif and
al. find a outage probability expression for cellular network by
mean of the so-called fluid model. In [5], Ganti and al. find
the interesting results about temporal and spatial correlation
of wireless networks. In [10] and [11], outage probability
of regular hexagonal cellular networks with reuse factor and
adaptive beamforming is studied by simulation.

This paper is organized as following. In the section II we
describe our model. In this section III we show that the path
loss shadowing is a Poisson point process in real line. In the
section IV we calculate outage probability. In the section V
we calculate the handover probability. Section VI shows the
numerical results and the difference between our model and
the traditional hexagonal model.

II. SYSTEM MODEL AND SCENARIO

A. Propagation model

The signal radio propagation modelling is complicated,
usually divided by a deterministic large scale path loss and
the random fading components. The large scale path loss
describes the channel at a microscopic level. If there are a
BS (base station) located aty and an mobile located atx and
the transmission powerP , the mobile’s received signal has the
average powerL(y − x)P whereL is the path loss function.
We assume thatL is measurable function onR2.

The most used path loss function is the path loss exponent
law L(z) = K|z|−γ where |z| refers to the Euclid norm of
z. The parameterK depends on the frequency, the antenna
height,... while the path loss exponentγ characterizes the
environment under study.γ is typically in the range of(2, 4),
it may be greater if the environment is very dense urban. In
fact, this path loss model is not correct for small distancesand
has infinite mean of interference for Poisson patterns of BSs
[1]. To avoid theses problems, one can use the modified path
loss exponent modelL(z) = K(max{R0, |z|})−γ whereR0

is a reference distance.
In addition to the deterministic large scale effect, there

are two random factors can be considered. The first, called
shadowingor shadow fading, represents the signal attenuation
caused by a large obstacle such as building. The second, called
fast fading, represents the impact of multipath phenomena, or
in other word many objects scatter the signal. The shadowing
can be considered as constant during a period of communi-
cation of the mobile while the fast fading changes each time
slot. If there is no beamforming technique is used, the received
signal power from BSy to MS x at the time slotl will be

Pyx[l] = ry,x[l]hyxL(y − x)P, (1)

where{hyx}x,y∈R2 are copies of a random variableH while
{ryx[l]} are independent copies ofR which is an exponential
random variable of mean1/µ. We suppose that for eachx,
the random variableshyx for all y ∈ R2 are independent. We

definepH the probability density function ofH andFH(β) =
P (H ≥ β) =

∫∞
β

pH(t)dt. The most used shadowing random
model is log-normal shadowing, for whichH is a log-normal
random variable. In this case, we can writeH ∼ 10G/10 where
G ∼ N (0, σ2).

In short word, we suppose that during the period of study,
the shadowing remains constant while the Rayleigh fast fading
changes at each time slot.

Consider the path loss shadowing processΞ = {ξi =
(hyxL(y − x)P )−1}. We make the following assumptions:

Assumption 1:For eachx ∈ R2, {hyx}y∈R2 are indepen-
dent.

Assumption 2:H admits a continuous probability density
function on(0,∞).

Assumption 3:Define B(β) =
∫

R2 FH((L(z)Pβ)−1)dz,
then0 < B(β) < ∞ for all β > 0.

By the displacement theorem we will show thatΞ is a sim-
ple Poisson point process in the real line(0,+∞) (proposition
1) of intensityΛ(dt) = λBB

′(β) > 0. Hence we have the right
to reorderΞ such thatξ0 < ξ1 < ... and for simplicity we do
it.

B. Poisson point process of BSs

We assume the homogenous Poisson point process of BSs
ΠB = {y0, y1, ...} of intensityλB on R2, each BS transmit
has constant transmitted powerP . For any details on Poisson
point process we refer to [2].

Assumption 4:Once being in the network the mobilex is
firstly attached to (or served by) the BSs that provide the best
averagesignal strength intime. In other word, it is attached
by y0 (after reordering and renumberingΞ).

C. Beamforming model

We consider the conventional beamformer technique with
nt antennas. The power radiation pattern for a conventional
beamformer is a product of array factor and radiation pattern
of a single antenna. Ifφ is the look direction (toward which
the beam is steered), the array gain in the directionθ is given
by ( [11], [10]):

sin2(nt
π
2 (sin(θ) − sin(φ))

nt sin
2(π2 (sin(θ) − sin(φ))

g(θ),

whereg(θ) is the gain in the directionθ with one antenna.
For simplicity we assume that the BS always steers to the
direction of the serving MS and the gaing(θ) is positive
constant on(−π/2, π/2) and0 otherwise (zero front-to-back
power ratio). Hence, the interference signal power from a BS
to a MS attached by an other BS using the same frequency in
the directionθ will be reduced by a factor of:

a(θ) = 1{θ∈(−π/2,π/2)}
sin2(nt

π
2 (sin(θ)))

n2
t sin

2(π2 (sin(θ)))
·

If the beamforming technique is not used, we will simply use
a(θ) = 1.
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D. Frequency reuse

We add a mark to each BSsei. The marksei are independent
copies of the random variableE who is uniformly distributed
on {1, 2, ..., k} where k will be called the frequency reuse
factor. The BSs that have the same mark interfere between
themselves. Our reuse model can be considered as the worst
case where the bandwidth is divided intok subband and each
BS is randomly attributed a sub band. It is contrast to the
hexagonal network pattern where the interfering BS must be
placed far from a reference BS.

E. SINR

Assume that each other BS using the same frequency is
always serving a MS, and the MSx is in the directionθi
which is i.i.d chosen on(−π, π) of the BSi. The SINR at the
time slot l is defined as:

sx[l] =
ry0x[l]ξ

−1
0

N +
∑

i6=0 1{ei=e0}a(θi)ryix[l]ξ
−1
i

, (2)

where N is a constant noise power. The termIx =
∑

i6=b(x) 1{ei=e0}a(θi)ryix[l]ξ
−1
i is the sum of all interfer-

ences. In order to make communication with the attached BS,
the SINR must not fall below some thresholdT .

F. Handover decision

We consider a simple SINR based decision. The handover
should be made if the MS is in outage forn consecutive time
slots.

G. Scenario

The scenario is as following:

• Realization of a snapshot of BSsyi, slow fadinghyix and
the frequencyei.

• Attachment of mobilex to best BS, (y0 after reordering
Ξ).

• Realization of the directionsθi for interfering BSyi.
• At time slot l, realization of Rayleigh fast fadingryix[l]

and calculate the SINRsx[l]. If sx[l] < T then the mobile
is in outage otherwise it is covered.

• If the mobile is in outage forn consecutive time slots
then the handover should be made.

The outage probability is thenpo(T ) = P (sx[l] < T ) and
the handover decision probability ispho(T ) = P (sx[l] <
T, ..., sx[l + n − 1] < T ). We also define the coverage
probabilitypC(T ) = P (sx[l] ≥ T ).

H. Interference limited case

We are particularly interested in the interference limited
regime when the noise powerN is negligible or nearly equal
to zero as it happens usually in a real network. We can set
N = 0. The outage probability calculated in the interference
regime can be considered as an upper bound for the outage
probability in the general case.

III. POISSON POINT PROCESS OF PATH LOSS SHADOWING

A. General case

Proposition 1: Ξ is a Poisson point process onR+ =
(0,∞) with intensity densityΛ(dt) = λBB

′(t)dt.
Proof: Define the marked point processΠx =

{yi, hyix}∞i=0. It is a Poisson point process of intensity
λBdy ⊗ fH(t)dt because the marks are i.i.d. We consider
the probability kernelp((z, t), A) = 1{(L(z)Pt)−1∈A} for all
Borel A ∈ R+ and apply the displacement theorem ( [2],
theorem 1.3.9) to obtain that the point processΞ is Poisson
point process of intensity

Λ(A) = λB

∫

R2⊗R

1({L(z)tP )−1∈A}pH(t)dzdt·

We now show thatΛ([0, β]) = λBB(β). Indeed,

Λ([0, β]) = λB

∫

R2⊗R

1{t≥(βP.L(z)P )−1}pH(t)dzdt

= λB

∫

R2

FH((βL(z)P )−1)dz

= λBB(β)·

Finally B(β) admits a derivative:

B′(β) = β−2

∫

R2

1

L(z)P
pH((βL(z)P )−1)dz· (3)

This concludes the proof.
The CDF and PDF ofξm are easily derived according to

the property of Poisson point process:
Lemma 1:The complementary cumulative distribution

function of ξm is given by:

P (ξm > t) = e−λBB(t)
m
∑

i=0

(λBB(t))i

i!
, (4)

and its probability density function is given by

pξm(t) = λm+1
B B′(t)B(t)me−λBB(t)· (5)

Proof: The event ”ξm > t” is equivalent to the event ”in
the interval[0, t] there is at mostm points” and the number
of points in this interval follows a Poisson random variableof
meanλBB(t), so:

P (ξm < t) = e−λBB(t)
m
∑

i=0

(λBB(t))i

The PDF is thus given bypξm(t) = − d
dtP (ξm < t), and after

some simple manipulations we obtain the equation (5)

B. Special cases

In this section we derive closed forms forB(β) in some
special cases.
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a) Path loss exponent model:
Lemma 2: If L(z) = K|z|−γ then:

B(β) = C.β
2
γ , (6)

whereC = π(PK)
2
γ E(H

2
γ ).

Proof: We have:

B(β) = 2π

∫ ∞

0

r1{tPKβ≥rγ}pH(t)drdt

= 2π

∫ ∞

0

pH(t)dt

∫ (tKPβ)1/γ

0

rdr

= π(PK)
2
γ β

2
γ

∫ ∞

0

pH(t)t
2
γ dt

= π(PK)
2
γ E(H

2
γ )β

2
γ ·

Hence the result.
Remark that this result can be derived from [9]. We observe
that the distribution of the point processΞ does depend only
on E(H

2
γ ) but not on the distribution of shadowingH itself.

This phenomenon can be explained as in [4](page 159).
b) Modified path loss exponent model:

Lemma 3: If L(z) = K(max{R0, |z|})−γ then:

B(β) = C1β
2
γ

∫ ∞

R
γ
0

βPK

t
2
γ pH(t)dt, (7)

whereC1 = π(PK)
2
γ . In addition, we have:

B′(β) =
2

γ
β−1B(β) + πR2

0pH(
Rγ

0

PKβ
)· (8)

If the slow fading is lognormal shadowingH ∼ 10G/10 where
G ∼ N (0, σ2) we have:

B(β) = C1β
2
γ e(

2σ1
γ )2Q(

− lnβ − ln(PKR−γ
0 )

σ1
− 2σ1

γ
) (9)

whereQ(u) = 1√
2π

∫∞
u

e−u2/2du is theQ-function andσ1 =
σ ln 10

10 .
Proof: Similarly to the pathloss exponent model case, we

have:

B(β) = 2π

∫

R2

rFH((max{R0, r})−γ(PKβ)−1)dr

= πR2
0FH(Rγ

0 (PKβ)−1) +

+2π

∫ ∞

R
γ
0

βPK

pH(t)dt

∫ (tKPβ)1/γ

R0

rdr

= C1β
2
γ

∫ ∞

R
γ
0

PKβ

t
2
γ pH(t)dt·

We obtain the equation (7). Derivative two sides of that
equation and do some simple manipulations we obtain the

equation (8). In the case of lognormal shadowing we have:

B(β) = C1β
2
γ

∫ ∞

R
γ
0

PKβ

1
√

2πσ2
1t
t

2
γ e

− (ln t)2

2σ2
1 dt

= C1β
2
γ

∫ ∞

ln
R

γ
0

PKβ

1
√

2πσ2
1

e
2u
γ e

− u2

2σ2
1 du

= C1β
2
γ e(

2σ1
γ )2

∫ ∞

ln
R

γ
0

PKβ

1
√

2πσ2
1

e
−

(u−
2σ2

1
γ

)2

2σ2
1 du·

Here the results.
As a consequence, both the exponent path loss model and its
modified model satisfy the assumption 3.

IV. OUTAGE ANALYSIS

A. General case

Here, we remark that the outage probability and the cover-
age probability do not depend on the time index. So we can
drop the time slot parameter in this section. The expressionof
the SINR can be rewritten as:

sx =
ry0xξ

−1
0

N +
∑

i6=0 1{ei=e0}a(θi)ryixξ
−1
i

· (10)

The outage probability is calculated as below:
Theorem 1:The outage probability is given by

po = 1− λB

∫ ∞

0

B′(β)e−λBB(β)−NTµβ− λB
2πkD(β)dβ

whereD(β) =
∫ π

−π dθ
∫∞
β B′(ξ) dξ

1+ξ(Tβa(θ))−1 .
Proof: To calculate the outage probabilityP (sx < T ),

we will calculate the coverage probabilityP (sx ≥ T ).
We first consider the conditional probabilityP (sx ≥ T |ξ0 =

β). Becausery0x is an exponential random variable of mean
1/µ we have:

P (sx ≥ T |ξ0 = β) = P (ry0x ≥ Tβ(N + Ix(β))|ξ0 = β)

= E(e−µTβ(N+Ix(β))|ξ0 = β)

= e−NTµβLIx(β)(Tµβ)

whereIx(β) is the distribution of the random variableIx given
on the event(ξ0 = β)) andLIx(β) is its Laplace transform.
Conditioning on the event(ξ0 = β) the point process{ξi}i>0

is a Poisson point process on(β,∞) with intensityλBB
′(ξ)dξ

according to the strong Markov property. By thinning theorem,
the point process{ξi}{i>0,ei=e0} is a Poisson point process
on (0, β) with intensity λB

k B′(ξ)dξ. Hence,LIx(β) can be
calculated as follows ( [2], shot noise theory):

LIx(β)(u) = e
−
∫ ∞

β

λB
2πkB′(ξ)(1−E(e−a(θ)uξ−1R))dξ

= e
− λB

2πk

∫ ∞

β
B′(ξ)dξ

∫ ∞

0
dr
∫

π

−π
µe−µr(1−e−a(θ)urξ−1

)dθ

= e
− λB

2πk

∫

π

−π
dθ
∫ ∞

β
B′(ξ) dξ

1+ξµ(ua(θ))−1 ·
We get that:

P (sx ≥ T |ξ0 = β) =

= e
−NTµβ− λB

2πk

∫ π

−π
dθ
∫ ∞

β
B′(ξ) dξ

1+ξ(Tβ.a(θ))−1 ,
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thus
= e−NTµβ− λB

2πkD(β)· (11)

Since the distribution density ofξ0 is λBB
′(β)e−λBB(β)

(proposition 1), by averaging over allξ0 we obtain the equation
(11).

B. Special cases

c) Interference limited:
Collary 1: In the interference-limited regime, we have

po(T ) = 1− λB

∫ ∞

0

B′(β)e−λBB(β)− λB
2πkD(β)dβ· (12)

d) Path loss exponent model:
Collary 2: If L(z) = K|z|−γ we have:

po(T ) = 1−
∫ ∞

0

e−Mα−Gα
γ
2 dα (13)

whereM := M(k, T, γ) = 1+ 1
2πk

∫ π

−π dθ
∫∞
1

du

1+(T.a(θ))−1u
γ
2

andG = NTµ(λBC)−
γ
2 .

Proof: SinceB(ξ) = C.ξ
2
γ and B′(ξ) = 2C

γ ξ
2
γ−1 we

have:

D(β) =

∫ π

−π

dξ

∫ ∞

β

2C

γ
ξ

2
γ −1 dθ

1 + ξ(Tβa(θ))−1

= C.β
2
γ

∫ π

−π

dθ

∫ ∞

β

d( ξ
β )

2
γ

1 + ξ
β (Ta(θ))

−1

= C.β
2
γ

∫ π

−π

dθ

∫ ∞

1

du

1 + (Ta(θ))−1u
γ
2

·

Plug it into (11) we have:

pc(T ) =

∫ ∞

0

2λBC

γ
β

2
γ −1e−λBCMβ

2
γ −NTµβdβ

=

∫ ∞

0

e−Mα−Gα
γ
2 dα·

Remark that ifγ = 4, we can find that:

M = 1 +
1

2πk

∫ π

−π

dθ

∫ ∞

1

du

1 + (Ta(θ))−1u2

= 1 +
1

2πk

∫ π

−π

√

Ta(θ)(
π

2
− arctan

1
√

Ta(θ)
)dθ

and

po(T ) = 1− e
M2

4G

∫ ∞

0

e
−(

√
Gα+ M

2
√

G
)2
dα

= 1−
√
2π

G
e

M2

4G Q(
M

2
√
G
)·

e) Interference limited and path loss exponent model:
In this case, the outage probability is easily derived from (13)
by settingN = 0.

Collary 3: If L(z) = K|z|−γ andN = 0 we have:

po(T ) = 1− 1

M
· (14)

C. Observations and interpretations

Some interesting facts are observed from above results:

• Rewrite the expression of SINR as

sx[l] =
ry0x[l]ξ

−1
0

µN +
∑

i6=0 1{ei=e0}a(θi)ryix[l]ξ
−1
i

wherery0x[l] = µryix[l]. Sinceryx[l] is an exponential
random variable of mean1/µ, ry0x[l] is an exponential
random variable of mean1. Hence by the above equation
it is expected that the outage probability depends on the
productµN but not directly onµ andN . It is increasing
function ofNµwhich is confirmed by the equation (11).
The fact that the outage probability is the increasing
function ofµ andN is quite natural, the increase of noise
or the degrade of the channel fast fading always makes
the system work worsts.

• It is also expected that in the interference limited case
(N = 0) the outage probability does not depend onµ.
It is confirmed by the equation (12). Physically it means
that in the absence of noise, the fast fading increases or
degrades the channels to the MS of the serving BS and
the interfering BS at the same level, thus the SINR will
not change.

• In the interference limited and exponent path loss model
case, the outage probability does not depend onµ, the
BS density λB, or the distribution of shadowingH .
It is due to the scaling property of the exponent path
loss and the homogeneous Poisson point process. The
outage probability is a decreasing function of the path
loss exponentγ, reflecting the fact that bad propagation
environment degrades the received SINR.

• In the presence of noiseN > 0 and exponent path loss
model case, the outage probability is a increasing function
of λB. Hence, it can be thought that the more an operator
installs BSs, the better the network is. In addition, if the
density of BSs goes to infinite then outage will never
occur. However it is not true. In fact, if the density of
BSs is very high, the distance between a MS and its
serving BS and some interfering BSs is relatively close.
Here, the exponent path loss model is no longer valid
since it is not accurate at small distance. If the modified
exponent path loss is used which is more appreciate,
the outage probability must converge to0. The outage
probability is also a increasing function ofE(H

2
γ ), and

if the shadowingH follows lognormal distribution then
the outage probability will be increasing function ofσ.
We recover an other well known fact: the increase of
uncertainty of the radio channel degrades the performance
of the network.

V. HANDOVER ANALYSIS

A. General case

If the MS is in outage inn consecutive time slots, a
handover decision has to be made. Keep in mind that only
the Rayleigh fast fading changes each time slot, and the other
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network components do not change. LetAl be the event that
the mobile being in outage in the time slotl, andAc

l its com-
plement and observe that in factP (∩m

i=1A
c
ji) = P (∩m

i=1A
c
i ).

By definitionpho := P (∩n
i=1Al+i−1) = P (∩n

i=1Ai). We have

pho = 1 +

n
∑

m=1

(−1)m
∑

j1 6=... 6=jm∈{1,..,n}
P (∩m

i=1A
c
ji )

= 1 +

n
∑

m=1

(−1)m
n!

m!(n−m)!
P (∩m

i=1A
c
i )·

Theorem 2:The handover probability is given by:

pho = 1 +

n
∑

m=1

(−1)m
n!

m!(n−m)!
qm,

whereqm = P (∩m
i=1A

c
i ) is given by:

qm =

∫ ∞

0

λBB
′(β)e−λBB(β)−NTµβ− λB

2πkDm(β)dβ,

andDm(β) =
∫ π

−π dθ
∫∞
β B′(ξ)(1 − ( 1

1+Tβa(θ)ξ−1 )
m)dξ.

Proof:
We need to calculate the probabilityP (∩m

i=1A
c
i ) that is the

probability that the mobile is covered inm different time slots.
The calculation is similar the that in section IV. We begin with
calculating the conditional probabilityP (∩m

i=1A
c
i |ξ0 = β):

P (∩m
i=1A

c
i |ξ0 = β) = P (sx[1] ≥ T, ..., sx[m] ≥ T |ξ0 = β)

= P (ry0x[i] ≥ β(TN + Ix[i])i = 1..m|ξ0 = β)

= E(e−µ(mTNβ+
∑

m

i=1
Ix(β)[i])|ξ0 = β)

= e−mNTµβL∑m

i=1
Ix(β)[i]

(Tµβ)

whereIx(β)[i] is the distribution of the random variableIx[i]
given (ξ0 = β). We have :

m
∑

i=1

Ix(β)[i] =

∞
∑

j=1

1{ei=e0}ξ
−1
i a(θi)(

m
∑

i=1

ryix[i])·

As the random variablesryix[i] are independent copies of
the exponential random variableR, the random variables
∑m

i=1 ryix[i] are also i.i.d and the common Laplace transform
of the later are :

L∑m

i=1
ryix[i]

(u) = (LR(u))
m

= (
µ

µ+ u
)m·

The Laplace transform of
∑m

i=1 Ix(β)[i] is now:

L∑m

i=1
Ix(β)[i]

(u) = e
− λB

2πk

∫ π

−π
dθ
∫ ∞

β
B′(ξ)(1−( µ

µ+a(θ)ξ−1u
)m)dξ·

The conditional probability is then given by:

P (∩m
i=1A

c
i |ξ0 = β) = e−mNTµβ− λB

2πkDm(x)·
By averaging with respect toξ0, we have:

qm =

∫ ∞

0

λBB
′(β)e−λBB(β)−NTµβ− λB

2πkDm(β)dβ·

This concludes the proof.

B. Special cases

We can obtain more closed expression forqm in some
special cases.

f) Interference limited:
Collary 4: In the interference limited regimeN = 0, we

have:

qm =

∫ ∞

0

λBB
′(β)e−λBB(β)− λB

2πkDm(β)dβ·

g) Path loss exponent model:
Collary 5: If L(z) = K|z|−γ then:

qm =

∫ ∞

0

e−Mmα−Gα
γ
2 dα

whereMm = 1 + 1
2πk

∫ π

−π
dθ

∫∞
1

(1 − ( 1

1+Ta(θ)u−
γ
2
)m)du.

Proof: The proof follows the same lines as the proof of
2
Closed expression ofqm is obtained in the caseγ = 4:

qm =

√
2π

G
e

M2
m

4G Q(
Mm

2
√
G
)·

h) Interference limited and path loss exponent model:
Collary 6: If N = 0 andL(z) = K|z|−γ we have:

qm =
1

Mm
·

C. Observations and interpretations

Some interesting facts are observed from above results and
they are similar to the properties of outage probability:

• The handover probability is increasing function ofNµ.
• In the interference limited and exponent path loss model

case, the handover probability does not depend onµ, the
BSs densityλB , nor the distribution of shadowingH .
The handover probability is a decreasing function of the
path loss exponentγ.

• In the presence of noiseN > 0 and exponent path
loss model case, the handover probability is a increasing
function of λB. Thus, in this case the more an operator
installs BSs, the less a MS has to do handover. But it
is not true in a real system. As previously explained, in
the case of very dense BSs, the pathloss exponent model
is no longer accurate for small distance. The handover
probability is also a increasing function ofE(H

2
γ ),

therefore if the shadowingH is lognormal shadowing
the handover probability will be increasing function of
σ.

VI. N UMERICAL RESULTS AND COMPARISON TO THE

HEXAGONAL MODEL

We place a MS at the origino and consider a region
B(o,Rg) whereRg = 10.000(m). The BSs are distributed as
a Poisson point process in this region. The path loss exponent
model is considered. The default values of model are placed
on the table I. They are not changed throughout the simulation.
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TABLE I
MODEL PARAMETERS’ DEFAULT VALUES

K P nt µ
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γ = 4, Poisson−analytic

γ = 4, Hexagonal−simulation

γ = 3, Poisson−simulation

γ = 3, Poisson−analytic

γ = 3, Hexagonal−simulation

Fig. 1. Outage probability vs SINR threshold

In literature, the hexagonal model is widely used and studied
so we would like to compare two models. For a fair compar-
ison, the density of BSs must be chosen to be the same, i.e
the area of a hexagonal cell will be1/λB. Unlike the Poisson
model where each BS is randomly assigned a frequency, in
the hexagonal model, the frequencies are well assigned so
that an interfering BS is far from the transmitting BS and
BSs of different frequency are grouped in reuse patterns.
The reuse factork in the hexagonal model is determined by
k = i2+ j2+ ij where integersi, j are the relative location of
co-channel cell. The MS is uniformly chosen on the surface
of the center cell. The same signal propagation model and
the scenario described in the section II-G are applied in the
hexagonal model.

The figure 1 shows the outage probability versus the SINR
threshold of the Poisson model and the hexagonal model in
the casek = 7. As we can see, the outage probability in the
case of Poisson model is always greater than that of hexagonal
model which is intuitive. The different is about8 (dB) in the
caseγ = 4 and6(dB) in the caseγ = 3.

In the figure 3 plotted the outage probability as a function
of γ. We can see that the outage probability is a decreasing
function ofγ as theoretically observed. In the figure 4 plotted
the handover probability versus the SINR threshold of Poisson
model and hexagonal model. If the reuse factork increase, the
MS has to do less handover. Thus, increase the reuse factor
has a positive effect on the system performance not only in
term of outage but also in term of handover.

VII. C ONCLUSION

In this paper we have investigated the outage and handover
probabilities of wireless cellular networks taking into account
the reuse factor, the beamforming, the path loss, the slow
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Fig. 2. Handover probability vs SINR threshold
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Fig. 3. Outage probability vs path loss exponentγ, Poisson model
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Fig. 4. Handover probability vs path loss exponentγ, Poisson model,n = 3

fading and the fast fading. We valid our model by simulation
and compare numerical results to that of hexagonal model.
The analytical expressions derived in the this paper can be
considered as an upper bound for a real system.
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