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ON THE ONE DIMENSIONAL POISSON RANDOM

GEOMETRIC GRAPH

L. DECREUSEFOND AND E. FERRAZ

Abstract. Given a Poisson process on a bounded interval, its random geo-
metric graph is the graph whose vertices are the points of the Poisson process
and edges exist between two points if and only if their distance is less than a
fixed given threshold. We compute explicitly the distribution of the number
of connected components of this graph. The proof relies on inverting some
Laplace transforms.

1. Motivation

As technology goes on [1, 2, 3], one can expect a wide expansion of the so-called
sensor networks. Such networks represent the next evolutionary step in building,
utilities, industrial, home, agriculture, defense and many other contexts [4].

These networks are built upon a multitude of small and cheap sensors which
are devices with limited transmission capabilities. Each sensor monitors a region
around itself by measuring some environmental quantities (e.g., temperature, hu-
midity), detecting intrusion, etc, and broadcasts its collected informations to other
sensors or to a central node. The question of whether information can be shared
among the whole network is then of crucial importance.

Many researches have recently been dedicated to this problem considering a
variety of situations. It is possible to categorize three main scenarios: those where
it is possible to choose the position of each sensor, those where sensors are arbitrarily
deployed in the target region with the control of a central station and those where
the sensor locations are random in a decentralized system.

The problem of the first scenario is that, in many cases, placing the sensors is
impossible or implies a high cost. Sometimes this impossibility comes from the fact
that the cost of placing each sensor is too large and sometimes the network has an
inherent random behavior (like in the ad hoc case, where users move). In addition,
this policy cannot take into account the configuration of the network in the case of
failure of some sensor.

The drawback of the second scenario is a higher unity cost of sensors, since each
one has to communicate with the central station. Besides, the central station itself
increases the cost of the whole system. Moreover, if sensors are supposed to know
their positions, an absolute positioning system has to be included in each sensor,
making their hardware even more complex and then more expensive.

It is thus important to investigate the third scenario: randomly located sensors,
no central station. Actually, if we can predict some characteristics of the topology
of a random network, the number of sensors (or, as well, the power supply of
them) can be a priori determined such that a given network may operate with high
probability. For instance, we can choose the mean number of sensors such that, if
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2 L. DECREUSEFOND AND E. FERRAZ

they are randomly deployed, there is more than 99% of probability the network to
be completely connected.

Usually, sensors are deployed in the plane or in the ambient space, thus math-
ematically speaking, one has to deal with configurations in R2, R3 or a manifold.
The recent works of Ghrist and his collaborators [5, 6] show how, in any dimension,
algebraic topology can be used to compute the coverage of a given configuration of
sensors. Trying to pursue their work for random settings, we quickly realized that
the dimension of the ambient space played a key role. We then first began by the
analysis of dimension 1, which appeared as the most simple situation. There is here
no need of the sophisticated tools of algebraic topology. However, it doesn’t seem
that the problem of coverage on a finite length interval has already been solved in
the full extent we do here. Higher dimensions will be the object of forthcoming
papers.

We here address the situation where the radio communications are sufficently
polarized so that we can consider we have some privileged dimension. Random
coverage in one dimension has been already studied in different contexts. Some
years ago already, several analysis were done on the circle ([7, 8] and references
therein) for a fixed number of points and uniform distribution of points over the
circle. The question addressed was that of full coverage. More recently, in [9],
efficient algorithms to determine whether a region is covered considering the sensors
are deployed over a circle and distributed as a Poisson point process are given. In
[7, 10], the distribution of a fixed number of clusters (see below for the definition)
is given. In [11], sensors are actually placed in a plan, have a fixed radius of
observation. The trace of the covered regions over a line is then studied.

Our main result is the distribution of the number of connected components
for a Poisson distribution of sensors in a bounded interval. Our method is very
much related to queueing theory. Indeed, clusters, i.e., sequence of neighboring
sensors, are the strict analogous of busy periods. As will appear below, our analysis
turns down to be that of an M/D/1/1 queue with preemption: when a customer
arrives during a service, it preempts the server and, since there is no buffer, the
customer who was in service is removed from the queuing system. To the best of
our knowledge, such a system has never been studied but the usual methods of
Laplace transform, renewal processes, work perfectly and with a bit of calculus,
one can compute all the characteristics we are interested in.

The paper is organized in the following way: Section II presents the physical
and random assumptions and defines the relevant quantities to be calculated. The
calculations and analytical results are presented in Section III. In section IV, two
other scenarios are presented, considering the number of incomplete clusters and
clusters placed in a circle. In Section V, numerical examples are presented and
analyzed.

2. Problem Formulation

Let L > 0 be the length of the domain in which sensors are located. We assume
that sensors are distributed according to a Poisson process of intensity λ. Let
(Xi, 1 ≤ i ≤ n) be the positions of the sensors. We thus know that the random
variables, ∆Xi = Xi+1 −Xi are i.i.d. and exponentially distributed. Due to their
technological limitations, each sensor can communicate only with other sensors
within a range ǫ: two sensors, located respectively at x and y, are said to be
directly connected whenever |x − y| ≤ ǫ. For i < j, two sensors located at Xi

and Xj are indirectly connected if Xl and Xl+1 are directly connected for any
l = i, · · · , j − 1. A set of sensors directly or indirectly connected is called a cluster
and the connectivity of the whole network is measured by the number of clusters.
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The number of points in the interval [0, x] is denoted by Nx =
∑∞

n=0 1{Xn≤x}.
The random variable Ai given by

Ai =

{

X1 if i = 1,
infj{Xj|Xj > Ai−1, Xj −Xj−1 > ǫ} if i > 1,

represents the beginning of the i-th cluster, denoted by Ci. In the same way, the
end of this same cluster, Ei, is defined by

Ei = infj{Xj + ǫ|Xj > Ai, Xj+1 −Xj > ǫ}.

So, the i-th cluster, Ci, has a number of points given by NEi
− NAi

. We define
the length Bi of Ci as Ei − Ai. The intercluster size, Di, is the distance between
the end of Ci and the beginning of Ci+1, which means that Di = Ai+1 − Ei and
∆Ai is the distance between the first points of two consecutive clusters Ci, given
by ∆Ai = Ai+1 −Ai = Bi +Di.

Remark 1. With this set of assumptions and definitions, we can see our problem
actually as an M/D/1/1 preemptive queue, Fig. 1. In this non-conservative system,
the service time is deterministic and given by ǫ. When a customer arrives during
a service, the served customer is removed from the system and replaced by the
arriving customer. Within this framework, a cluster corresponds to what is called
a busy period, the intercluster size is the idle time and Ai +Di is the length of the
i-th cycle.

ǫ

Remaining

service time

Time

· · ·

X1

A1

1↓

X2

2↓

1↑

X3

3↓

2↑

X4

A2

3⇑

E1

4↓

X5

5↓

4↑ 5⇑

X6

A3E2

6↓

X7

7↓

6↑

Figure 1. Queueing representation of the proposed problem. A
down arrow denotes that user i starts to be served. An up arrow
indicates that user i leaves the system without have finished the
service. A double up arrow illustrates that the service of user i
finishes. It is also shown the beginning and the end of the ith busy
period, respectively, Ai and Ei.

The number of complete clusters in [0, L] corresponds to the number of connected
components β0(L) (since in dimension 1, it coincides with the Euler characteristics
of the union of intervals, see [12, 5]) of the network. The distance between the
beginning of the first cluster and the beginning of the (i + 1)-th one is defined

as Ui =
∑i

k=1 ∆Ak. We also define ∆X0 = D0 = X1. Fig. 2 illustrates these
definitions.

Lemma 1. For any i ∈ N
∗
+, Ai and Ei are stopping times.
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∆XNA2
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ǫ ǫ

∆A1 = U1

Figure 2. Definitions of the relevant quantities of the network:
distance between points, distance between clusters, the size of clus-
ters, the size interclusters, the beginning of clusters and the end of
clusters.

Proof. Let us consider the filtration Ft = σ{Na, a ≤ t}. For i = 1, we have

{A1 ≤ t} ⇔ {X1 ≤ t} ⇔ {Nt ≥ 1} ∈ Ft.

Thus, A1 is a stopping time. For A2, we have

{A2 > t} ⇔
⋃

n≥1







Nt = n,

n
⋃

j=1







∆Xj ≥ ǫ,

n
⋃

k=j+1

{∆Xk ≤ ǫ}













∈ Ft,

so A2 is also a stopping time. We proceed along the same line for others Ai and as
well for Ei to prove that they are stopping times. �

Since N is a strong Markov process, the next corollary is immediate.

Corollary 2. The set {Bi, Di | i =≥ 1} is a set of independent random variables.
Moreover, Di is distributed as an exponential random variable with mean 1/λ and
the random variables {Bi | i ≥ 1} are i.i.d.

3. Calculations

Theorem 3. The Laplace transform of the distribution of Bi, is given by

E
[

e−sBi
]

=
λ+ s

λ+ se(λ+s)ǫ
·

Proof. Since ∆Xj is an exponentially distributed random variable,

E
[

e−s∆Xj1{∆Xj≤ǫ}

]

=

∫ ǫ

0

e−stλe−λtdt =
λ

s+ λ

(

1− e−(s+λ)ǫ
)

.
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Hence, the Laplace transform of the distribution of B1 is given by

E
[

e−sB1
]

=
∞
∑

n=1

E
[

e−sB1 , NE1
= n

]

=

∞
∑

n=1

E



e−s(
∑n−1

j=1
∆Xj+ǫ)1{∆Xn>ǫ}

n−1
∏

j=1

1{∆Xj≤ǫ}





=

∞
∑

n=1

(

E
[

e−s∆X11{∆X1≤ǫ}

])n−1
E
[

e−s∆Xn1{∆Xn>ǫ}

]

e−sǫ

=

∞
∑

n=0

(

λ

s+ λ
(1− e−(s+λ)ǫ)

)n

e−sλe−sǫ

=
λ+ s

seλǫesǫ + λ
,

Using Collorary 2, we have E
[

e−sB1

]

= E
[

e−sBi
]

, which concludes the proof. �

From this result, we can immediately calculate the Laplace transform of the
distribution of ∆Ai. Since ∆Ai = Bi +Di, we have E

[

e−s∆Ai
]

= E
[

e−s(Bi+Di)
]

and using Corollary 2:

E
[

e−s∆Ai
]

= E
[

e−sBi
]

E
[

e−sDi
]

=
λ

λ+ se(λ+s)ǫ
·

Corollary 4. The Laplace transform of the distribution of Un, for n ≥ 0 is given
by

E
[

e−sUn
]

=
λn

(

λ+ se(λ+s)ǫ
)n ·

Proof. We use Corollaries 2 and 3 to calculate the Laplace transform of the distri-
bution of Un, since Un =

∑n
i=1(Bi +Di):

E
[

e−sUn
]

=
n
∏

i=1

E
[

e−sBi
]

E
[

e−sDi
]

=

(

λ+ s

λ+ se(λ+s)ǫ

)n (
λ

λ+ s

)n

,

hence the result. �

Let us define the function pn as

pn : x ∈ R+ 7−→ pn(x) = Pr(β0(x) = n),

i.e., pn(x) is the probability of having n clusters in the interval [0, x]. Since for all
x ∈ R+, 0 ≤ pn(x) ≤ 1, the Laplace transform of pn with respect to x,

L{pn}(s) =

∫ ∞

0

e−sxpn(x) dx,

is well defined.

Theorem 5. For any n ≥ 0, the Laplace transform of pn is given by

(1) L{pn}(s) =
λn e(λ+s)ǫ

(

se(λ+s)ǫ + λ
)n ·
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Un−1

0

L

∆X0 D1 Dn

B1 B2 Bn Bn+1

Figure 3. Illustration of the condition equivalent to β0 ≥ n.

Proof. We note that, see Figure 3,

{β0(x) ≥ n} ⇐⇒

{

{∆X0 + Un−1 +Bn ≤ L} if n ≥ 1,

{∆X0 < ∞} if n = 0.

Hence

Pr(β0(x) = 0) = 1− Pr(∆X0 +B1 ≤ x),

and

(2) Pr(β0(x) = n) = Pr(∆X0 + Un−1 +Bn ≤ x)− Pr(∆X0 + Un +Bn+1 ≤ x).

Let

Yn =

{

∆X0 + Un−1 +Bn if n ≥ 1
0 if n = 0

,

then we have:

L{Pr(Yn ≤ ·)}(s) =

∫ ∞

0

Pr(Yn ≤ x)e−sxdx

=

∫ ∞

0

∫ x

0

dPYn
(y)e−sxdx

=
1

s
E
[

e−sYn
]

=
1

s
E
[

e−s∆X0
]

E
[

e−sUn−1
]

E
[

e−sBn
]

=
1

s

λn

(eλǫsesǫ + λ)
n ,(3)

for n ≥ 1, where we used Corollary 2 in the third line. For n = 0, the Laplace
transform is trivial and given by L{Pr(Y0 ≤ ·)}(s) = 1/s. Substituting Eq. (3) in
the Laplace transform of both sides of Eq. (2) yields:

L{pn}(s) = L{Pr(Yn ≤ ·)}(s)− L{Pr(Yn+1 ≤ ·)}(s)

=
eǫλeǫsλn

(eǫλseǫs + λ)
n+1 , n ≥ 0.

The proof is thus complete. �

Lemma 6. Let m be an positive integer. For any x > 0, when ǫ → 0, E [βm
0 ] →

E [Nm
L ].

Proof. Since there is almost surely a finite number of points in [0, x], for almost all
sample-paths, there exists η > 0 such that ∆Xj ≥ η for any j = 1, · · · , Nx. Hence
for ǫ < η, β0(x) = Nx. This implies that β0(x) tends almost surely to Nx as ǫ goes
to 0. Moreover, it is immediate by the very definition of β0(x) that β0(x) ≤ Nx.
Since for any m, E [Nm

x ] is finite, the proof follows by dominated convergence. �
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Let Lit(z), z, t ∈ R, z < 1, be the polylogarithm function with parameter t,
defined by

Lit(z) =

∞
∑

k=1

zk

kt
·

For m a positive integer, consider the function of x

(4) Mm
β0

: x 7−→ E [βm
0 (x)] =

∞
∑

i=0

impi(x).

Its Laplace transform is given by:

L
{

Mm
β0

}

(s) =

∫ ∞

0

E [β0(x)
m] e−sL dx.

Corollary 7. Let α be defined as follows:

α =
eǫλ

λ
seǫs.

The Laplace transform of the m-th moment of β0(L) is:

L
{

Mm
β0

}

(s) =
α

s (α+ 1)
Li−m

(

1

α+ 1

)

,(5)

which converges, provided that α > 0.

Proof. Applying the Laplace transform of both sides of Eq. (4), we get:

L
{

Mm
β0

}

(s) =

∞
∑

i=1

imL{pi}(s)

=
eǫλ

λ eǫs
(

eǫλ

λ seǫs + 1
)

∞
∑

i=1

im
(

eǫλ

λ seǫs + 1
)i

=
α

s (α+ 1)
Li−m

(

1

α+ 1

)

,

concluding the proof. �

We define
{

m

k

}

as the Stirling number of second kind [13], i.e.,
{

m

k

}

is the

number of ways to partition a set of m objects into k groups. They are intimately
related to polylogarithm by the following identity (see [14]) valid for any positive
integer m,

(6) Li−m(z) =
m
∑

k=0

(−1)m+kk!

{

m+ 1
k + 1

}

(1 − z)k+1
·

Corollary 8. The m-th moment of the number of clusters on the interval [0, L] is
given by:

Mm
β0
(L) =

m
∑

k=1

{

m
k

}(

L

ǫ
− k

)k
(

λǫe−ǫλ
)k

1{L/ǫ>k}.(7)
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Proof. Using (6) in the result of Corollary 7, we get:

L
{

Mm
β0

}

(s) =
α

s

m
∑

k=0

(−1)m+kk!

{

m+ 1
k + 1

}

(1 + α)k

αk+1 (α+ 1)

=
1

s

m
∑

k=0

ck,m
1

αk
,

where the coefficients ck,m are integers given by:

ck,m =

m
∑

j=k

(−1)jj!

{

m+ 1
j + 1

}(

j

k

)

.

Using the following identity of Stirling numbers [15],

m
∑

j=0

(−1)jj!

{

m+ 1
j + 1

}

= 0,

we find that c0,m = 0 for m a positive integer. So we can write the Laplace
transform of the moments as

L
{

Mm
β0

}

(s) =

m
∑

k=1

ck,m

(

λe−ǫλ
)k

sk+1eksǫ

and apply the inverse of the Laplace transform in both size of Eq. (3) to obtain:

Mm
β0
(L) = L−1

{

m
∑

k=1

ck,m

(

λe−ǫλ
)k

sk+1eksǫ

}

(L)

=

m
∑

k=1

ck,m
(

λe−ǫλ
)k

L−1

{

1

sk+1eksǫ

}

(L)

=
m
∑

k=1

ck,m
k!

(L− kǫ)k
(

λe−ǫλ
)k

1{L>kǫ}

According to Lemma 6, when ǫ → 0, we obtain

Mm
β0
(L) = E [Nm

L ] =

m
∑

k=1

ck,m
k!

(Lλ)k1{L>0}.

Hence, for any λ > 0,

m
∑

k=1

ck,m
k!

(Lλ)k1{L>0} =
m
∑

k=1

{

m
k

}

(Lλ)k1{L>0},

which shows that

ck,m =

{

m
k

}

k! .

Thus, we have proved (7) for any positive integer m. �

Theorem 9. For any n, L, λ and ǫ, we have:

Pr(β0(L) = n) =
1

n!

⌊L/ǫ⌋−n
∑

i=0

(−1)i

i!
((L − (n+ i)ǫ)λe−λǫ)n+i.(8)
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Proof. Since β0(L) ≤ NL and since E
[

esNL
]

is finite for any s ∈ R, we have, for
any s ≥ 0:

E

[

e−sβ0(L)
]

=
∞
∑

k=0

(−1)k
sk

k!
E
[

βk
0 (L)

]

.

Rearranging the terms of the right-side hand and substituting Mm
β0
(L), by the result

of Eq. (7), we obtain:

E

[

e−sβ0(L)
]

=

∞
∑

k=0



(L− kǫ)k
(

λe−λǫ
)k

1{L>kǫ}

∞
∑

j=k

(−s)j

j!

{

j
k

}



 ·

Furthermore, it is known (see [15]) that

∞
∑

j=k

xj

j!

{

j
k

}

=
1

k!
(ex − 1)k.

Hence,

E

[

e−sβ0(L)
]

=

∞
∑

k=0

(L− kǫ)k
(

λe−λǫ
)k

1{L>kǫ}
(e−s − 1)k

k!
·

By inverting the Laplace transforms, we get:

∞
∑

k=0

∞
∑

i=k

(−1)i

i!

(

i

n

)

δ(k−n)(kǫ− L)k
(

λe−λǫ
)k

1{L>kǫ},

where δa is the Dirac measure at point a. After some simple algebra, we find the
expression of the probability that an interval contains n complete clusters:

Pr(β0(L) = n) = pn(L) =
1

n!

⌊L/ǫ⌋−n
∑

i=0

(−1)i

i!
([L− (n+ i)ǫ]λe−λǫ)n+i,

concluding the proof. �

Lemma 10. For x ≥ 0, pn(x) has the three following properties:

i) pn(x) is differentiable;
ii) limx→∞ pn(x) = 0;

iii) limx→∞
dpn(x)

dx = 0.

Proof. Let j be a non-negative integer. The function is obviously differentiable
when x/ǫ 6= j. Besides, we have

lim
x→ǫj+

pn(x)− lim
x→ǫj−

pn(x) = lim
x→ǫj+

(−1)j

j!

(

(x− (n+ j)ǫ)
1

a

)n+j

·

Since the right-hand term function of x is zero as well as its derivative for all j,
the function is also derivable when x/ǫ = j, which proves i). Items ii) and iii) are
direct consequences of Final Value theorem in the Laplace transform of pn and its
derivative. �

The expression of pn gives us a Laplace pair between the x and s domains:

1{x≥0}

n!

⌊x/ǫ⌋−n
∑

i=0

(−1)i

i!

(

(x− (n+ i)ǫ)
1

a

)n+i
L

⇐⇒
aeǫs

(aseǫs + 1)
n+1 .(9)

We can use this relation to find the distributions of Bi and Un.
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Theorem 11. The distributions of Bi and Un, respectively fBi
(x) and fUn

(x) are

fBi
(x) =

[

λe−ǫλp0(x− ǫ) + e−ǫλ d

dx
p0(x− ǫ)

]

1{x>ǫ},(10)

and

fUn
(x) = λe−ǫλpn−1(x − ǫ)1{x>ǫ},(11)

where the expressions of p0(x − ǫ) and d
dxp0(x − ǫ) are straightforwardly obtained

from Eq. (8).

Proof. According to Corollary 3:

E
[

e−sBi
]

=
1

λ

(λ+ s)
eλǫ

λ sesǫ + 1

= λe−ǫλ e
ǫλ

λ

eǫs

eǫλ

λ seǫs + 1
e−ǫs + e−ǫλs

eǫλ

λ

eǫs

eǫλ

λ seǫs + 1
e−ǫs

= λe−ǫλe−ǫsL{p0(·)} (s) + e−ǫλe−ǫssL{p0(·)} (s).

Here, using the inverse Laplace transform established in Eq. (9) and remembering
that p0(x

−) = 0, we get an analytical expression for fBi
(x), proving Eq. (10).

Proceeding in a similar fashion, we can find the distribution of Un by inverting
its Laplace transform given by Corollary 4:

E
[

e−sUn
]

=
1

(

eλǫ

λ sesǫ + 1
)n

= λe−ǫλ e
ǫλ

λ

eǫs
(

eǫλ

λ seǫs + 1
)n e

−ǫs

= λe−ǫλe−ǫsL{pn−1(·)} (s).

We thus have Eq. (11). �

We can also obtain the probability that the segment [0, L] is completely covered
by the sensors. To do this, we remember that the first point (if there is one) is
capable to cover the interval [X1 − ǫ,X1 + ǫ].

Theorem 12. Let Rm,n(x) be defined as follows:

Rm,n(x) =

⌊x/ǫ⌋−1
∑

i=m





(

e−λǫ
)i+n

i+n
∑

j=0

(λ[(1 − i)ǫ− x])j

j!



 ·

Then,

(12) Pr([0, L] is covered) = R0,1(L)− e−λǫR0,1(L− ǫ)

− e−λǫR1,0(L) + e−2λǫR1,0(L − ǫ).

Proof. The condition of total coverage is the same as
{

∀x ∈ [0, L], ∃Xi ∈ [0, L]
∣

∣

∣x ∈ [X1 − ǫ,X1 + ǫ]
}

,

which means that:

{[0, L] is covered} ⇔ {B1 ≥ L−X1} ∩ {X1 ≤ ǫ}.

Hence,

Pr([0, L] is covered) =

∫ ǫ

0

Pr(B1 ≥ L−X1|X1 = x)dPX1
(x),
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and since B1 and X1 are independent:

Pr([0, L] is covered) =

∫ ǫ

0

∫ ∞

L−x

fB1
(u)λe−xλdudx.

The result then follows from Lemma 10 and some tedious but straightforward al-
gebra. �

4. Other Scenarios

The method can be used to calculate pn for other definitions of the number of
clusters. We consider two other definitions: the number of incomplete clusters and
the number of clusters in a circle.

4.1. Number of incomplete clusters. The major difference with Sec. 3 is that a
cluster is now taken into account as soon as one of the point of the cluster is inside
the interval [0, L]. So, for instance, in Fig. 3, we count actually n + 1 incomplete
clusters. We define β′

0(L) as the number of incomplete clusters on an interval [0, L].

Theorem 13. Let G(k) be defined as

G(k) = (−1)k



e−kλǫ
k

∑

j=0

[λ(kǫ− L)]j

j!
− e−λL



 1{T>kǫ}

for k ∈ N+ and G(−1) = e−λL. Then

Pr(β′
0(L) = n) =

⌊L/ǫ⌋+1
∑

i=n

(−1)i+n

(

i

n

)

(G(i− 1) +G(i)), for n ≥ 0.

Proof. The condition of β′
0(L) ≥ n is now given by:

{β′
0 ≥ n} ⇐⇒

{

{∆X0 + Un−1 ≤ L} if n ≥ 1,

{∆X0 < ∞} if n = 0.

We define Yn as

Yn =

{

∆X0 + Un−1 if n ≥ 1
0 if n = 0.

Repeating the same calculations, we find the Laplace transform of Pr(β′
0(.) = n):

L{Pr(β′
0(·) = n)}(s) =



















λ

s+ λ

eǫλ

λ

eǫs
(

eǫλ

λ seǫs + 1
)n if n ≥ 1,

1

λ+ s
if n = 0.

With this expression, following the lines of Lemma 6, we obtain:

L{E [β′
0(·)

m]} (s) =

m+1
∑

k=1

{

m+ 1
k

}

(k − 1)!
1

sk
λ

λ+ s

(

λe−λǫ

esǫ

)k−1

.

Then, we write:

λ

λ+ s

1

sk
=

(−1)k

λk−1

1

λ+ s
+

k
∑

i=1

1

si

(

−1

λ

)k−i

,

to find an expression with a well known Laplace transform inverse, and after in-
verting it, we obtain:

E [β′m
0 ] =

m
∑

k=0

{

m+ 1
k + 1

}

k!G(k).
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Expanding the Laplace transform of the distribution of β′
0(L) in a Taylor series and

rearranging terms, we get

E

[

e−sβ′

0(L)
]

= 1 + G(0)

∞
∑

j=1

(−s)j

j!

{

j
1

}

+





∞
∑

k=1

G(k)

∞
∑

j=k

(−s)j

j!

{

j + 1
k + 1

}



 .

Now, we use another recurrence that Stirling numbers obey [15],
{

j + 1
k + 1

}

=

{

j
k

}

+ (k + 1)

{

j
k + 1

}

,

to get:
∞
∑

j=k

xj

j!

{

j + 1
k + 1

}

=

∞
∑

j=k

xj

j!

({

j
k

}

+ (k + 1)

{

j
k + 1

})

=
1

k!
(ex − 1)k +

1

k!
(ex − 1)k+1.

Hence,

E

[

e−sβ′

0(L)
]

= 1 +

∞
∑

k=1

(G(k − 1) +G(k))(e−s − 1)k.

Inverting this expression for any non-negative integer n, we have the searched dis-
tribution. �

4.2. Number of clusters in a circle. We investigate now the case where the
points of the process are deployed over a circumference and we want to count the
number of complete clusters, which corresponds to calculate the Euler’s Character-
istic of the total coverage, so we call this quantity χ. Without loss of generality ,
we can choose an arbitrary point to be the origin.

Theorem 14. The distribution of the Euler’s Characteristic, χ(L), when the points
are deployed over a circumference of length L is given by

(13) Pr(χ(L) = n) = e−λL1{n=0} + (1 − e−λL)
λe−ǫλ

n!

⌊L/ǫ⌋−n
∑

i=0

[

(−1)i

i!

([L − (n+ i)ǫ]λe−ǫλ)n+i−1

(

L+ (n+ i)

(

1

λ
− ǫ

))]

,

for n ≥ 0.

Proof. If there is no points on the circle, χ(L) = 0. Otherwise, if there is at least
one point, we choose the origin at this point and we have equivalence between the
events:

{χ(L) ≥ n} ⇔

{

{Un−1 +Bn ≤ L} ∩ {NL > 0} if n ≥ 1,
{∆X0 < ∞} if n = 0.

In Fig. 4 we present an example of this equivalence.
We can define Yn as

Yn =

{

Un−1 +Bn if n ≥ 1
0 if n = 0,

to find the Laplace transform or Pr(χ(L) = n):

L{Pr(χ(·) = n)}(s) = (1− e−λL)
λ+ s

λ

eǫλ

λ

eǫs
(

eǫλ

λ seǫs + 1
)n ·(14)
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Bn

L
D1 Dn

B1 B2 Bn Bn+1

Un−1

0
NL

B1

Dn

D1

0

NL

ǫ

m

Un−1

B2

Figure 4. Illustration of the condition equivalent to χ(L) ≥ n.
Since the coverage of the last point on [0, L] overlaps the cluster
with a point in zero, they are actually contained in the same cluster

The number of clusters is almost surely equal to the number of points when ǫ → 0,
so

E [χ(L)m] = (1− e−λL)λe−ǫλ
m
∑

k=1

[{

m
k

}

([L− kǫ]λe−ǫλ)k−1

(

L+ k

(

1

λ
− ǫ

))

1{L>kǫ}

]

.
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Expanding the Laplace transform in a Taylor series and rearranging terms, as we
did previously, yields

E

[

e−sχ(L)
]

= (1− e−λL)λe−ǫλ
∞
∑

k=0

[

(

[L− kǫ]λe−ǫλ
)k−1

(

L+ k

(

1

λ
− ǫ

))

1{L>kǫ}

∞
∑

j=k

(−s)j

j!

{

j
k

}



 .

Since
∞
∑

j=k

(−s)j

j!

{

j
k

}

=
(e−s − 1)k

k!
,

we can directly invert this Laplace transform, add the case where there are no
points for χ(L) = 0, and the theorem is proved. �

5. Examples

We consider some examples to illustrate the results of the paper. Here, the
behavior of the mean and the variance of β0(L) as well as Pr(β0(L) = n) are
presented.

From Eq. (7), we have that E [β0(L)] is given by:

E [β0(L)] = (L− ǫ)λe−ǫλ1{L>ǫ}.

This expression agrees with the intuition that there are three typical regions given a
fixed ǫ. When λ is much smaller than 1/ǫ, the number of clusters is approximatively
the number of sensors, since the connections with few sensors will unlikely happen,
which can be seen from the fact that E [β0(L)] → Lλ when λ → 0. As we increase
λ, the mean number of direct connections overcomes the mean number of sensors
and, at some value of λ, we expect that E [β0(L)] decreases, when adding a point
is likely to connect disconnected clusters. We remark that the maximum occurs
exactly for ǫ = 1/λ, i.e., when the mean distance between two sensors equals the
threshold distance for them to be connected. At this maximum, E [β0(L)] takes the
value of (L/ǫ− 1)e−1. Finally, when λ is too large, all sensors tend to be connected
and there is only one cluster which even goes beyond L, so there are no complete
clusters into the interval [0, L]. This is trivial when we make λ → ∞ in the last
equation. Figure 5 shows this behavior when L = 4 and ǫ = 1.

The variance can be obtained also by Eq. (7):

Var(β0(L)) = (L− ǫ)λe−ǫλ1{L>ǫ} + (L− 2ǫ)λ2e−2ǫλ1{L>2ǫ}

− (L− ǫ)2λ2e−2ǫλ1{L>ǫ},

and under the condition that L > 2ǫ:

Var(β0(L)) = (L− ǫ)λe−ǫλ + ǫ(3ǫ− 2L)λ2e−2ǫλ.

Fig. 6 shows a plot of Var(β0(L)) in function of λ for L = 4 and ǫ = 1. We can
expect that, when λ is small compared to ǫ, the plot should be approximatively
linear, since there would not be too much connections in the network and the
variance of the number of clusters should be close to the variance of the number of
sensors given by λL. Since β0(L) tends almost surely to 0 when λ goes to infinity,
Var(β0(L)) should also tend to 0 in this case. Those two properties are observed in
the plot. Besides, we find the critical points of this function, and again, λ = 1/ǫ is
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Figure 5. Variation of the mean number of clusters in function
of λ when L = 4 and ǫ = 1.
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0

Figure 6. Behavior of the variance of the number of clusters in
function of λ when L = 4 and ǫ = 1.

one of them and at this value Var(β0(L)) = (L/ǫ)e−1 + (3 − 2L/ǫ)e−1. The other
two are the ones satisfying the transcendant equation:

λe−λǫ =
L− ǫ

2ǫ(2L− 3ǫ)
·

By using the second derivative, we realize that 1/ǫ is actually a minimum. Besides,
if L ≤ 2ǫ, there is just one critical point, a maximum, at λ = 1/ǫ.
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The last example in the section is performed with the result obtained in Theo-
rem 9. We consider again L = 4 and ǫ = 1 to obtain the following distributions:

Pr(β0(L) = 0) = 1− 3λe−λ + 2λ2e−2λ − 1/6λ3e−3λ,

Pr(β0(L) = 1) = 3λe−λ − 4λ2e−2λ + 1/2λ3e−3λ,

Pr(β0(L) = 2) = 2λ2e−2λ − 1/2λ3e−3λ,

Pr(β0(L) = 3) = 1/6λ3e−3λ,

Pr(β0(L) > 3) = 0.

Those expressions are simple and they have at most four terms, since L = 4ǫ. We
plot these functions in Fig. 7. The critical points on those plots at λ = 1/ǫ are
confirmed for the fact that, in function of λ, for every n, Pr(χ(L) = n) can be
represented as a sum

j
∑

i=0

qi,j(λe
−λǫ)i

where the coefficients qi,j are constant in relation to λ. However, (λe−λǫ)i has a
critical point at λ = 1/ǫ for all i > 0, so this should be also a critical point of
Pr(χ(L) = n). If λ is small, we should expect that Pr(χ(L) = 0) is close to one,
since it is likely to N have no points. For this reason, in this region, Pr(χ(L) = n)
for n > 0 is small. When λ is large, we expect to have very large clusters, likely
to be larger than L, so it is unlikely to have a complete cluster in the interval and,
again, Pr(χ(L) = 0) approaches to the unity, while Pr(χ(L) = n) for n > 0 become
again small.

λ

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
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Pr(β0 = n) in function of λ

β0 = 0
β0 = 1
β0 = 2
β0 = 3

0

Figure 7. Probabilities of connectiveness, Pr(β0(L) = n), for n =
0, 1, 2, 3, in function of λ when L = 4 and ǫ = 1.
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