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A Fusion Scheme for Joint Retrieval of Urban Height
Map and Classification From High-Resolution

Interferometric SAR Images
Céline Tison, Florence Tupin, and Henri Maître

Abstract—The retrieval of 3-D surface models of the Earth is a
major issue of remote sensing. Some nice results have already been
obtained at medium resolution with optical and radar imaging
sensors. For instance, missions such as the Shuttle Radar Topag-
raphy Mission (SRTM) or the SPOT HRS have provided accurate
digital terrain models. The computation of a digital surface model
(DSM) over urban areas is the new challenging issue. Since the
recent improvements in radar image resolution, synthetic aperture
radar (SAR) interferometry, which had already proved its effi-
ciency at low resolution, has provided an accurate tool for urban
3-D monitoring. However, the complexity of urban areas and high-
resolution SAR images prevents the straightforward computa-
tion of an accurate DSM. In this paper, an original high-level
processing chain is proposed to solve this problem, and some
results on real data are discussed. The processing chain includes
three main steps, namely: 1) information extraction; 2) fusion;
and 3) correction. Our main contribution addresses the merging
step, where we aim at retrieving both a classification and a DSM
while imposing minimal constraint on the building shapes. The
joint derivation of height and class enables the introduction of
more contextual information. As a consequence, more flexibility
toward scene architecture is possible. First, the initial images
(interferogram, amplitude, and coherence images) are converted
into higher-level information mapping with different approaches
(filtering, object recognition, or global classification). Second,
these new images are merged into a Markovian framework to
jointly retrieve an improved classification and a height map.
Third, DSM and classification are improved by computing lay-
over and shadow from the estimated DSM. Comparison between
shadow/layover and classification allows some corrections. This
paper mainly addresses the second step, while the two others are
briefly explained and referred to already published papers. The
results obtained on real images are compared to ground truth and
indicate a very good accuracy in spite of limited image resolution.
The major limit of DSM computation remains the initial spatial
and altimetric resolutions that need to be made more precise.

Index Terms—Classification, height map, Markovian fusion,
synthetic aperture radar (SAR) interferometry, urban areas.

I. INTRODUCTION

THE EXTRACTION of 3-D town models is a major issue
for many applications, such as, for example, environment

or urban planning. Thanks to the recent improvement of syn-

Manuscript received November 10, 2005; revised September 29, 2006.
C. Tison is with the Centre National d’Etudes Spatiales, DCT/SI/AR, 31401

Toulouse Cedex 4, France (e-mail: celine.tison@cnes.fr).
F. Tupin and H. Maître are with GET, Ecole Nationale Superieure des

Telecommunications, CNRS UMR 5141, 75013 Paris, France.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TGRS.2006.887006

thetic aperture radar (SAR) image resolution, SAR interferom-
etry can now address this issue. Taking also into account the
launching of future SAR missions (SAR Lupe, CosmoSkymed,
TerraSAR-X), the evaluation of the potential of interferometry
over urban areas is a subject of major concern. This paper
presents an original and flexible method to extract a digital
surface model (DSM) from a high-resolution interferogram
over urban areas. Due to their complexities, a dedicated scheme
is required.

This paper is deliberately restricted to the use of one single
interferometric data take per scene to fully assess the potential
of interferometry. The challenge has also been the development
of a method with no restriction on building shapes. Actually,
urban architecture is so diverse that minimal hypotheses on
building shape are required.

A. Interferometry and the Urban Area Context

An interferogram is the phase difference of two SAR images
that are acquired over the same scene with slightly different
incidence angles. Under certain coherence constraints, this
phase difference (the interferometric phase) is linked to scene
topography [1], [2]. The interferometric phase φ and the cor-
responding coherence ρ are, respectively, the phase and the
magnitude of the normalized complex hermitian product of two
initial SAR images (s1 and s2). To reduce noise, an averaging
over an L × L window is added as

ρejφ =
∑L2

i=1 s1(i)s
∗
2(i)√∑L2

i=1 |s1(i)|2
∑L2

i=1 |s2(i)|2
. (1)

φ has two contributions, namely: 1) the orbital phase φorb,
which is linked to natural variations of the line-of-sight vector,
and 2) the topographical phase φtopo. By Taylor expanding to
first order, the height h of every pixel is proportional to φtopo

and depends on the wavelength λ, the sensor target distance R,
the perpendicular baseline B⊥, and the incidence angle θ, i.e.,

h =
λ

2πp
R sin θ
B⊥

φtopo (2)

with p equal to 2 for the monostatic case and to 1 for the
bistatic case.
φorb is only geometry dependent and can be easily removed

from φ [2]. Therefore, in the following, the interferometric
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phase should be understood as the topographic phase (the
orbital phase was removed previously). The height is derived
from this phase. In the fusion scheme, the height map is used
rather than the interferometric phase.

Although (2) looks simple, direct inversion does not lead
to an accurate DSM. The first reason is knowledge of the
phase modulo 2π, which requires a phase unwrapping step.
The height corresponding to a phase equal to 2π is called the
ambiguity altitude. This ambiguity altitude is much higher than
the heights of buildings, which prevents phase wrapping. For
this reason, the topic of phase unwrapping is not addressed in
this paper.

For high-resolution images of urban areas, the difficulties
arise from geometrical distortions (layover, shadow), multiple
reflections, scene geometry complexity, and noise. As a con-
sequence, high-level algorithms are required to overcome these
problems and to have a good understanding of the scene. Height
filtering and edge preservation require specific processing for
the different objects of the scene (e.g., a building with a
roof should not be filtered the same way as vegetation). The
challenge is to get both an accurate height and an accurate shape
description of each object in the scene.

B. State of the Art

High-resolution SAR images remain quite new for the scien-
tific community, and as a consequence, only a small number of
teams have access to such data. Therefore, literature on DSM
computation from SAR interferometry is only at its beginning.
So far, four kinds of methods have been proposed.

1) Shape from shadow [3]. Building outlines are estimated
from the shadows detected in the amplitude image,
whereas the interferogram provides an average height
for each footprint. At least two (ideally four) amplitude
images are required with optimal view angles to detect all
the building edges. This requirement is very demanding
and is not very realistic when working with spaceborne
data takes.

2) Roof filtering [4]. The interferogram provides a noisy
height map that is filtered out by looking for horizontal
planes (roof buildings); these planes are initialized by 3-D
segments. These first two methods are only efficient for
large and isolated buildings.

3) Stochastic geometry [5]. The position and the shape
of each building are optimized by a function linking
the amplitude, coherence, and interferogram. Because
of computational time constraints, the building shape
model is restricted to a unique one. As a consequence,
a strong a priori assumption is made in favor of urban
architecture.

4) Global scene reconstruction based on a primary classi-
fication [6], [7]. This approach is the most flexible and
operational (at least [7] reference). It links 3-D recon-
struction and classification. At a first step, no assumption
on the building shapes are required. Nevertheless, the
significant results obtained by Soergel et al. [7] rely on
the merging of several interferograms over the same scene
and on a rectangular shape model for buildings.

Fig. 1. Global scheme of the proposed method for DSM estimation over urban
areas. The height estimation is processed jointly with a classification, as these
two pieces of information are deeply linked.

In this paper, the input data over a scene are deliberately
limited to an interferometric couple, and no constraint on build-
ing shapes is considered. Actually, in an operational context,
the user has to work with only one interferogram per scene.
In addition, town architecture is highly diverse: it cannot be
restricted to one building model. This framework led us to
select the fourth approach. However, instead of dealing with
the classification and the DSM estimation separately, a joint
computation of height and class is proposed. In fact, class and
height have strong interactions that should be taken into account
to improve the global scene recovery.

C. Proposed Method

Global processing is divided into three main steps (Fig. 1).
Since the original SAR data are difficult to interpret, new inputs
are preliminarily derived from pattern recognition methods,
denoising, classification, etc., to get higher-level information.
This step, which is briefly described in Section III, mainly
refers to previous work. In addition, the algorithms proposed
for this step and the results should be considered only as open
options. Users are free to develop their own tools to derive
first-step information with no impact on the global processing
chain architecture.

As a second step, all these new images are merged into a
Markovian framework to jointly provide a classification and a
height map. The merging method is inspired by Tupin et al. [8].
First, an oversegmentation of the scene is applied to define
regions on which classification and height recovery will be
applied. This region partitioning allows for the reduction of
computation time and for the description of region interactions.
The joint optimization of height and class is defined in a
Markovian framework using the new entries (obtained from
the first step) as the observation field (Section IV). The global
architecture of this second step is completely independent of
the number and content of the inputs. Therefore, the result
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Fig. 2. Presentation of the available data takes (Bayard district). (a) Multilook
amplitude. (b) Interferogram. (c) Coherence. (d) Ground truth (IGN BD Topo).
The coherence is very high as it is a single-pass acquisition.

can be easily improved by modifying the entries with no
consequence on the merging approach.

The third step is an improvement step that is briefly detailed
in Section V. The previously estimated DSM is projected
onto the ground, and the layover and shadow are computed
and compared with the classification. The edges of buildings
are validated or corrected from this comparison. Some
above-ground structures are also reclassified.

The algorithm is finally applied to a real data set (presented
in Section II); the method and its accuracy are commented on
in Section VI.

II. DATA TAKE DESCRIPTION

The available data take is a single-pass interferometric SAR
image acquired by RAMSES (ONERA SAR sensor) over
Dunkerque (north of France). The X-band sensor was operated
at submetric resolution. The baseline is about 0.7 m, which
leads to an average ambiguity altitude of 180 m. The ambiguity
altitude hamb is computed from (2) with φtopo = 2π: hamb =
(λR sin θ/pB⊥).

The height accuracy δh depends on the phase standard devi-
ation σ̂φ (δh = (hamb/2π)σ̂φ). As a first approximation, σ̂φ is
a function of the signal-to-noise ratio (SNR) and the number of
looks L, i.e.,

σ̂φ =

√
1 − ρ2√
2Lρ

ρ =
SNR

1 + SNR
. (3)

Unfortunately, the theoretical SNR was not available; thus,
σ̂φ has been estimated on a planar surface. It is about 0.1 rad,
which leads to a height accuracy of about 2–3 m. This value is
too high for a good DSM retrieval of small houses, but good
results can be expected on large buildings.

Fig. 2 presents some extracts of this data set. The area is com-
posed of large buildings (15 m high maximum) and residential
parts with small houses. The global track also contains an
industrial area with large buildings. In this paper, two districts
(Bayard and the industrial area) have been selected to account
for architectural diversity as much as possible.

An IGN BD Topo1 is available on the area: this database
gives building footprints (1-m resolution) and average height
of building edges (1-m accuracy). Unfortunately, the lack of
knowledge of SAR sensor parameters prevents us from regis-
tering the SAR data on the BD Topo precisely. Therefore, a

1Data take of the National Geographical Institute.

manual comparison is performed between the estimated DSM
and the BD Topo. This ground truth has been completed by an
extensive visit of the place.

III. FIRST-LEVEL PROCESSING

The initial input data are the amplitude of the SAR image,
the interferogram, and the corresponding coherence. These
three images are processed to get improved or higher-level
information. In this section, six algorithms are proposed for
this purpose. They are not claimed to be the most efficient
to represent urban landscapes. Users may implement their
own information extraction algorithms with no consequence on
the fusion scheme. Therefore, we deliberately do not detail the
algorithms at this stage; this paper is mainly dedicated to the
merging part.

Most of the algorithms were developed especially for this
study and were already published; the others are well-known
methods, which are helpful to solve part of the problem. The
readers can refer to the references for more details.

The operators that have been used in this paper can be divided
in three groups.

1) Classification operator. A first classification, based on
amplitude statistics, is computed [9]. The statistical
model is a Fisher distribution. This model is dedicated
to high-resolution SAR data over urban areas. The results
are improved with the addition of coherence and interfer-
ogram [10]. The output is a classified image with seven
classes (namely ground, dark vegetation, light vegeta-
tion, dark roof, medium roof, light roof/corner reflector,
and shadow).

2) Filtering operator. The interferogram is filtered to remove
global noise with an edge-preserving Markovian filtering
[11]. It is a low-level operator that improves the informa-
tion. The output is a filtered interferogram.

3) Structure extraction operators. Specific operators dedi-
cated to the extraction of the main objects that structure
the urban landscape (roads [12], corner reflectors [10],
shadows, and isolated buildings extracted from shadow
[13]) have been developed. The outputs are binary images
(1 for the object sought after and 0 elsewhere).

Therefore, six new inputs (i.e., the filtered interferogram,
the classification, the road map, the corner reflector map, the
shadow map, and the building from shadow map) are now
available from the three initial images. This new information is
partly complementary and partly redundant. For instance, the
corner reflectors are detected both with the dedicated opera-
tor and the classification. Generally speaking, the redundancy
comes from very different approaches: the first one is local
(classification), and the other one is structural (operators),
accounting for the shape. This redundancy should lead to a
better identification of these important structures.

IV. FUSION IN A MARKOVIAN FRAMEWORK

Starting from the six new inputs, our aim is to retrieve a
height map and a classification with semantic classes. In some
cases, only contextual information allows the retrieval of the
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correct class of a pixel (for instance, roofs and trees may have
close radiometries). Besides, this contextual information is not
at the pixel level; small sets of pixels should be considered. In
this case, two solutions can be developed: either the merging
is conducted on large neighborhoods around each pixel, or it is
conducted on small regions. The computational burden is larger
in the first case. In addition, the neighborhoods do not preserve
the shape for small objects. At this stage, the regions are deter-
mined easily from the new inputs without further computation;
no additional computation cost is added. Therefore, it has been
decided to consider regions rather than neighborhoods.

The regions and their neighborhoods are defined in
Section IV-A. As a consequence, the DSM reconstruction issue
becomes the recovery of height and urban object class for
each region. The introduction of contextual knowledge be-
tween the regions uses a Markovian model that is defined in
Sections IV-B and C. This assumption makes sense since a
scene can be interpreted at a local scale by a photo-interpreter.
The optimization algorithm, the parameters used, and their
influence are addressed in Section IV-D.

A. Graph Definition

Some of the results computed in Section III are already
based on contextual information: the classification operator
(radiometric homogeneity) and the structure extraction opera-
tors (structural and radiometric/interferometric homogeneities).
Therefore, these inputs are used for region definition. The
boundaries of the classification and of the extracted objects
(roads, etc.) are superimposed to define a partition of the scene.
Each part of this “oversegmentation” is a region that will be
considered as a node of the graph. The adjacency relationship is
used to define the neighborhood of a region. A region adjacency
graph (RAG) [14] is thus obtained, where each node is a region,
and two nodes are linked if the corresponding regions are adja-
cent. As explained in the following paragraph, a characterizing
vector is attached to each graph node. It contains the values of
the different inputs and the surface of the node (i.e., the number
of pixels per node).

B. Maximum A Posteriori (MAP) Formulation

In the following, bold characters are used for vectors. When
possible, capitals are used for random variables and normal size
characters for samples.

Two fields are defined on the RAG, namely: 1) the height
fieldH and 2) the label field L. The height values are quantized
to get discrete values from 0 to ambiguity altitude hamb with a
1-m step. There is a small oversampling of the height regarding
the expected precision. Hs, the random variable associated
with node s, takes its value in Z ∩ [0, hamb], and Ls takes its
value in the finite set of urban objects: ground (G), grass (Gr),
tree (T), building (B), corner reflector (CR), and shadow (S).
These classes have been chosen to model all the main objects
of towns as they appear in SAR images.

The six outputs in Section III define two fields H̄ and D
that are used as inputs of this merging step. H̄ is the filtered
interferogram and D is the observation field given by the
classification and the structure extractions.

A value h̄s of H̄ for a region s is defined as the mean height
of the filtered interferogram over this region. A value ds =
(di

s)1≤i≤n of D for a region s is defined as a vector built on the
classification result and object extractions. This vector contains
labels for the classification operator (here six classes are used)
and binary values for the other operators (i.e., corner reflector,
road, shadow, building estimated from shadows). They are still
binary or “pure” classes because of the oversegmentation.

The aim is to subsequently find the configuration of the
joint field (L,H) that maximizes the conditional probability
P (L,H|D, H̄). It is the best solution using the MAP criterion.
With the Bayes equation, we have

P (L,H|D, H̄) =
P (D, H̄|L,H)P (L,H)

P (D, H̄)

and

P (L,H) = P (L|H)P (H).

The joint probability is equal to

P (L,H|D, H̄) =
P (D, H̄|L,H)P (L|H)P (H)

P (D, H̄)
. (4)

Instead of supposing L and H independently, P (L|H) is
kept to constrain the class field by the height field. It usually
allows one to take into account simple considerations on real
architecture such as “roads are lower than adjacent buildings”
or “herb and road are approximately at the same height.” This
link between H and L is the main originality and advantage of
this approach.

Knowing the configurations d and h̄, the denominator
(P (D, H̄)) is constant and is not implied in the optimization
of (L,H). Therefore, the final probability to be optimized is

P (L,H|D, H̄) = kP (D, H̄|L,H)P (L|H)P (H) (5)

where k is a constant. The terms in (5) are defined in the
following section.

C. Energy Terms

Assuming that both fields H and L conditionally dependent
on H (L|H) are Markovian, their probabilities are Gibbs
fields. Adding the hypothesis of region-to-region independency
conditionally dependent on L and H , the likelihood term
P (D, H̄|L,H) is also a Gibbs field. Indeed, P (D, H̄|L,H) =∏

s P (Ds, H̄s|L,H), and assuming that the observation of
regions does not depend on the other regions, P (D, H̄|L,H) =∏

s P (Ds, H̄s|Ls,Hs). As a consequence, the energy is de-
fined with a clique singleton. The posterior field is thus
Markovian, and the MAP optimization of the joint field (L,H)
is equivalent to the search for the configuration that minimizes
its energy.

For each region s, the conditional local energyU is a function
of the class ls and the height hs given the detector values ds, the
observed height h̄s, and the field configuration ofL andH of its
neighborhood Vs. The energy is made up of two terms, namely:
1) the likelihood term Udata (coming from P (D, H̄|L,H)),
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corresponding to the influence of the observations, and 2) the
different contributions of the regularization term Ureg (coming
from P (L|H)P (H)), corresponding to the prior knowledge
that should be introduced on the scene. They are weighted
by a regularization coefficient β and by the surface As of the
region via a function α. The choice of the regularization terms
(β and α) is empirical. The results do not change drastically
with small (i.e., 10%) variations of β and α.

Taking into account the decomposition of the energy term
into two energies (Ureg and Udata) and the weighting by the
regularization term β and the surface function α, the following
energy form is proposed:

U(ls, hs|ds, h̄s, lt, htt∈Vs
) = (1 − β)

(∑
t∈Vs

AtAs

)
α(As)

× Udata(ds, h̄s|ls, hs) + β
∑
t∈Vs

AtAsUreg(ls, hs, lt, ht) (6)

where α is a linear function of As. If As is large, then the
influence of the neighborhood is reduced (∀x, 1 ≤ α(x) ≤ 2).
In addition, the different contributions of the regularization
term are weighed by the surface product AtAs to give more
credit to the largest regions. The factor (

∑
t∈Vs

AtAs) is a
normalization factor.

1) Likelihood Term: The likelihood term describes the
probability P (D, H̄|L,H). D and H̄ are independent, thus
P (D, H̄|L,H) = P (D|L,H) × P (H̄|L,H). Moreover, D is
independent from H , and H̄ is independent from L. Finally,
P (D, H̄|L,H) = P (D|L) × P (H̄|H). Therefore, the likeli-
hood term is considered equal to

Udata(ds, h̄s|ls, hs) =
n∑

i=1

UD(di
s|ls) + (hs − h̄s)2. (7)

The likelihood term on the height is quadratic because of the
Gaussian assumption over the interferometric phase probability
[2]. There is no analytical expression of the density probability
function of P (di

s|ls); it is thus determined empirically.
The values of UD(di

s|ls) are determined by the user with
respect to his a priori knowledge on the detector qualities.
di

s values are part of finite sets (almost binary sets) because
detectors deliver binary maps or classification. Therefore, the
number of UD(di

s|ls) values to be defined is not too high.
Actually, d1s is the classification operator result and has six
possible values. The four others (d2s the corner reflector map,
d3s the road map, d4s the “building from shadow” map, and d5s
the shadow map) are binary map values. Therefore, the users
have to define 96 values. Nevertheless, for binary maps, most
of the values are equal because only one class is detected (the
other ones are processed equally), which restricts the number of
values to approximately 50. An example of the chosen values is
given in Table I. To simplify the user choices, only eight values
can be chosen: 0.0, 0.5, 0.8, 1.0, −3.0, −2.0, −10.0, and 3.0.
Intermediate values do not have any impact on the results. The
height map is robust toward changes of values, whereas the
classification is more sensitive to small changes (from 0.8 to
0.5 for instance). Some confusion may arise between building
and vegetation for such parameter changes.

TABLE I
UD(di

s|ls) VALUES FOR EVERY CLASS AND EVERY DETECTOR. LINES

CORRESPOND TO THE DIFFERENT VALUES THAT EACH ELEMENT di
s

OF ds HAVE, WHEREAS THE COLUMN CORRESPONDS TO THE DIFFERENT

CLASSES CONSIDERED FOR ls. EACH VALUE IN THE TABLE IS THUS

U(di
s|ls) GIVEN THE VALUE OF di

s AND THE VALUE OF ls. THE MINIMUM

ENERGY VALUE IS 0.0 (MEANING “IT IS THE GOOD DETECTOR VALUE

FOR THIS CLASS”) AND THE MAXIMUM ENERGY VALUE IS 1.0 (MEANING

“THIS DETECTOR VALUE IS NOT POSSIBLE FOR THIS CLASS”). THERE

ARE THREE INTERMEDIATE VALUES, NAMELY: 1) 0.3; 2) 0.5; AND 3) 0.8.
YET WHEN SOME DETECTORS BRING OBVIOUSLY STRONG

INFORMATION, WE UNDERLINE THEIR ENERGY BY USING ±2, ±3, OR

−10 REGARDING THE CONFIDENCE LEVEL. IN THIS WAY, CORNER

REFLECTOR AND SHADOW DETECTORS ARE ASSOCIATED WITH THE LOW

ENERGY BECAUSE THESE DETECTORS CONTRIBUTE TRUSTWORTHY

INFORMATION THAT CANNOT BE CONTESTED. THE MERGING IS

ROBUST REGARDING SMALL VARIATION OF ENERGY VALUES.
CR = CORNER REFLECTORS, R = ROADS, BS = BUILDINGS

FROM SHADOWS, S = SHADOWS, B = BUILDING, S = SHADOW.
THE CLASSIFICATION VALUES d1

s MEAN 0 = GROUND, 1 = VEGETATION,
2 = DARK ROOF, 3 = MEAN ROOF, 4 = LIGHT ROOF, AND 5 = SHADOW.
THE CLASSES ARE GROUND (G), GRASS (GR), TREE (T), BUILDING (B),

CORNER REFLECTOR (CR), AND SHADOW (S)

Moreover, these values are defined once over the entire data
set and are not modified regarding the particularities of the
different parts of the global scene.

2) Regularization Term: The contextual term, relating
P (L|H)P (H), introduces two constraints and is written as

Ureg(ls, hs, lt, ht) = γ(hs,ht)(ls, lt) + ψ(hs − ht). (8)

The first term γ comes from P (L|H) and imposes constraints
on two adjacent classes ls and lt depending on their heights. For
instance, two adjacent regions with two different heights cannot
belong to the same road class. A set of such simple rules is built
up and introduced in the energy term.

The second term ψ comes from P (H) and introduces
contextual knowledge on the reconstructed height field. Since
there are many discontinuities in urban areas, the regularization
should both preserve edges and smooth planar regions (ground,
flat roof).

For the class conditionally dependent on heights, the adja-
cency of two regions is encouraged or discouraged regarding
relative height difference. Three cases have been distinguished,
namely: 1) hs ≈ ht; 2) hs < ht; and 3) hs > ht, and an adja-
cency matrix is built for each case. To preserve symmetry, the
matrix of the last case is equal to the transposed matrix of the
second case.

At hs ≈ ht, we have

γ(hs,ht)(ls, lt) = 0 if (ls, lt) ∈ {B,CR, S}2 (9)
γ(hs,ht)(ls, lt) = δ(ls, lt) else (10)

where δ is the Kronecker symbol.
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TABLE II
c(ls, lk) VALUES, I.E., γ(hs,hk)(ls, lk) VALUES WHEN hs < hk .

THE SYMMETRIC MATRIX GIVES THE VALUES OF γ(hs,hk)(ls, lk) WHEN

hs > hk . FOUR VALUES ARE USED FROM 0.0 TO 2.0. 0.0 MEANS THAT IT

IS HIGHLY PROBABLE TO HAVE CLASS ls CLOSE TO CLASS lk , WHEREAS

2.0 MEANS THE EXACT CONTRARY (IT IS ALMOST IMPOSSIBLE). THE

CLASSES ARE GROUND (G), GRASS (GR), TREE (T), BUILDING (B),
CORNER REFLECTOR (CR), AND SHADOW (S)

In this case, the two adjacent regions have similar height and
should belong to the same object. Yet, if the region is a shadow
or a corner reflector, the height may be noisy and could be close,
in average, to that of the building.

At hs < ht, we have

γ(hs,ht)(ls, lt) = c(ls, lt). (11)

At hs > ht, we have

γ(hs,ht)(ls, lt) = c(lt, ls). (12)

These last two cases relate the real relationship between
classes regarding their height. The user has to define the values
c(ls, lt) regarding real town structure. But there is a unique set
of values for an entire data set. An example of the chosen values
is given in Table II.

For the height, regularization is calculated with an edge-
preserving function [11]

ψ(hs, ht) =
(hs − ht)2

1 + (hs − ht)2
. (13)

This function is a good compromise to keep sharp edges while
smoothing planar surfaces.

D. Optimization Algorithm

Due to computational constraints, the optimization is
processed with an iterative conditional mode (ICM) algorithm
[15]. The classification initialization is computed from the
detector inputs. The maximum-likelihood value is assigned to
the initial class value, i.e., for each region, the initial class ls
is the one that minimizes

∑n
i=1 UD(di

s|ls). The initialization of
the height map is the filtered interferogram. This initialization
is close to the expected results, which allows an efficient
optimization through the ICM method.

The algorithm is run with specific values: the regularization
coefficient β is given a value of 0.4, and the α function is
equal to α(A) = (A− min(As))/(max(As) − min(As)) + 1.
min(As) and max(As) are, respectively, the minimum and
maximum region surfaces of the RAG. The energy terms de-
fined by the user are presented in Tables I and II. These values
are used for the entire data take; they are not adapted to each
extract. For a given data set, the user has thus to define these
values only once.

Fig. 3. Illustration of the improvement step. The ellipses simply underline
three areas with major improvement. Some edges are corrected (for instance,
the two regions circled on the left), and some missing corner reflectors are
added (the region circled on the right). (a) Initial classification. (b) Improved
one. In the two cases on the left, some vegetation has been classified as building
due to its amplitude property. Yet, its height is small, and the computation of the
layover part proves that these regions cannot belong to a building. In the case on
the right, no corner reflector has been detected, but, as it is a building, it should
appear somewhere. The correction step enables us to compute the position of
the corner reflector and to add it in the classification.

V. IMPROVEMENT STEP

The final step will correct some errors in the classification
and DSM by checking the coherency between them. In this part,
two RAGs are considered, namely: 1) the one defined for the
merging step (based on regions) and 2) a new one constructed
from the final classification l. The regions of the same class,
in the first graph, are gathered to obtain the complete object,
leading to an object adjacency graph.

The corrections are performed for each object. When an
object is flagged as misclassified, it is split in regions again
(according to the previous graph) to correct only the misclas-
sified parts of the objects.

The correction steps include the following.

• Rough projection of the estimated DSM on ground
geometry.

• Computation of the “layover and shadow map” from the
DSM in ground geometry (ray tracing technique).

• Comparison of the estimated classification with the pre-
vious map l, detection of problems (for instance, layover
parts that lay on ground class or layover parts that do not
start next to a building).

• Correction of errors. For each flagged object, the partition
of regions is reconsidered, and the region not compli-
ant with the layover and shadow maps is corrected. For
layover, several cases are possible: if layovers appear
on ground regions, the regions are corrected as trees or
buildings depending on their size; for buildings that do
not start with a layover section, the regions in front of the
layover are changed into grass. Height is not modified at
this stage.

Thanks to this step, some building edges are corrected,
and missing corner reflectors are added. The effects of the
improvement step on the classification are illustrated in Fig. 3.
The comparison of layover start and building edges allows the
edges to be relocated. In some cases, the building edges are
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Fig. 4. Results of the Bayard district. (a) Optical image (IGN). (b) Three-dimensional view of the DSM with SAR amplitude image as texture. (c) Classification
used as input. (d) Final classification. (Black = streets, dark green = grass, light green = trees, red = buildings, white = corner reflector, blue = shadow.)

mispositioned due to small objects close to the edges. They are
discarded through layover comparison.

In the very last step, the heights of vegetation regions are
reevaluated: it does not make sense to have a mean value for a
region of trees. Thus, the heights of the filtered interferogram
are kept in each pixel (instead of a value per region). Actually,
tree regions do not have a single height, and the preservation of
the height variations over these regions enables us to stay closer
to reality.

VI. APPLICATION ON REAL DATA

The fusion scheme presented in this paper has been tested on
a real set of high-resolution interferometric data (presented in
Section II). Two districts in Dunkerque have been selected for
their architectural diversity, namely: 1) the Bayard district and
2) an industrial area. The Bayard district includes a large panel
of buildings (isolated buildings, residential areas, and straight
and curved roads), whereas the industrial area features large
metallic buildings with strong backscattering.

The energy terms have been defined only once for the entire
X-band Dunkerque data set, and the values in Tables I and II
are used for both extracts.

A. Results on the Two Test Sites

The results are presented in Fig. 4 (Bayard district) and Fig. 5
(Industrial area), where the global understanding of the scene
appears to be very good with regards to the altimetric criterion

and to the class criterion. The first point is the good retrieval
of the road map in the Bayard district scene (the industrial case
does not present a real road map). The backbone of the urban
areas is thus well estimated. Then, the global shape of major
buildings is realistic, even for complex buildings. For instance,
the large building in the upper left part of the Bayard district is
very complex with several parts, irregular shapes, and different
roof elevations. Yet the estimated DSM and the classification
are very close to reality: the estimated elevations of the inner
courtyard and the roofs are right even if all the small details of
the roof are lost.

The height map is well regularized for flat areas, while
some roof details are present thanks to the region approach.
For instance, roof arches of the building on the middle right
part of the industrial area are kept (Fig. 6). This proves that
the roofs are not all modeled by flat surfaces. Such levels of
detail are only available on large buildings. In the case of small
houses with a sloping roof, the resolution is too poor to actually
estimate correctly the two slopes. The method will provide
them with an estimate if higher resolution data are available.

Nevertheless, due to poor altimetric precision (2–3 m, see
Section II), small gaps of less than 2 m appear on the flat
surface, such as roads or grass. They are due to altimetric noise
and should not be considered as information. A height sampling
rate equal to the noise height value will provide smoother
results.

The classification result is not corrupted by height noise, and
the final result is clearly better than the classification obtained
at the first step. The fusion scheme solves ambiguities between



TISON et al.: FUSION SCHEME FOR JOINT RETRIEVAL OF URBAN HEIGHT MAP AND CLASSIFICATION 503

Fig. 5. Results of the industrial area. (a) Optical image (IGN). (b) Three-dimensional view of the DSM with SAR amplitude image as texture. (c) Classification
used as input. (d) Final classification. (Black = streets, dark green = grass, light green = trees, red = buildings, white = corner reflector, blue = shadow.)

Fig. 6. Roof detail of the reconstructed industrial scene. The different arches
of the roof are very well reconstructed from the interferogram.

trees and buildings (some holes in building roofs are filled in).
Yet some confusion remains between trees and buildings as
their statistical properties may be very close. The detectors that
have been used do not take into account geometrical shapes,
which is here the only means to separate buildings and trees
when the proposed approach fails.

In addition, the classification is not accurate on very small
structures (such as residential areas) because the spatial resolu-
tion is too low. For instance, the small houses on the lower left
part of the Bayard district are not well retrieved because they
are too small. The classification acknowledges the presence of
man-made structures, but the edges are very approximate.

B. Comparison With Ground Truth

A manual comparison between ground truth and estimated
DSM has been conducted on 19 buildings of the Bayard area.
They have been picked out to describe a large variety of
buildings (small and large ones, regular and irregular shapes).
The mean height of the estimated building is compared with
the mean height of the BD Topo (ground truth). For each
building, the estimated height is plotted versus the expected
height (Fig. 7). A perfect estimation will lead to results close to
the (y = x) line. A small deviation can be observed. Actually,
the root mean square error is around 2.5 m, which is the best
result that could be expected in view of the altimetric precision
(2–3 m).

C. Critical Analysis

First, altimetric and spatial image resolutions have a very
strong impact on the quality of the result. They cannot be
ignored for result analysis. From these results, the spatial reso-
lution has to be better than 50 cm and the altimetric precision
better than 1 m to preserve all the structures for a very accurate
reconstruction of dense urban areas (containing partly small
houses). When these conditions are not met, one should expect
poor quality results on the smallest objects, which can be
observed with our data set. This conclusion is not linked with
the reconstruction method.

Second, a typical confusion is observed for every scene:
buildings and trees are not always well differentiated. They
both present similar statistical properties and can only be
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Fig. 7. Comparison of building mean height estimated from interferogram
versus building mean height of IGN BD Topo over 19 buildings of Bayard
district. Each star corresponds to a building. The error bar in the upper left part
of the plot represents the uncertainty associated with each interferometric mea-
surement. This uncertainty issues from the height accuracy of the interferogram
(see Section II).

differentiated with their geometry. In fact, building shape is
expected to be very regular (linear or circular edges, right
angles, etc.) compared with vegetation areas (at least in towns).
A solution may be the inclusion of geometrical constraints to
discriminate buildings from vegetation. Stochastic geometry is
a possible investigation field to add a geometrical constraint
after the merging step.

This problem appears mostly for the industrial areas where
there are no trees. In this case, the user may add an extra
information in the algorithm (for instance suppression of the
tree class) to reach a better result. This has been successfully
tested. This example proves that an expert will get better results
than a novice, or a fully automatic approach. Actually, the
complexity of the algorithm and the data requires expertise.
The user has to fix some parameters for the merging step level
(energy, weighting values). Nevertheless, once the parameters
have been assigned for a given data set, the entire data set can be
processed with these values. Yet locally some extra information
may be required, e.g., a better selection of the class.

Nevertheless, the method remains very flexible: users can
change detection algorithms or energy terms to improve the
final results without altering the processing chain architecture.
For instance, the detection of shadows is not optimum yet, and
better detection will certainly improve the final result.

VII. CONCLUSION

The purpose of this paper is to complete the processing chain
for retrieving DSM over urban areas from high-resolution SAR
interferogram. Emphasis is put on the merging step, where clas-
sification and DSM are retrieved jointly. The mutual relations
between class and height are used to improve both products.

The results are very promising: the estimated heights are
close to the real ones when building sizes are large enough

with regards to image and altimetric resolutions. In addition,
the global shape of the buildings, roads, and trees (namely, the
structure of the town) is well retrieved. Of course, results are
less convincing on residential areas as resolutions are too coarse
in this context. Good results can reasonably be expected in such
situations when a finer resolution is available. Nevertheless,
higher resolutions may infer new properties of the SAR signal,
which cannot be ignored.

The method presented here can be easily improved by mod-
ifying the entries of the merging step. The fusion scheme is
completely independent of the meaning and the number of these
entries.

Another important point that should be addressed is the
confusion between vegetation and building. In some cases, the
only discriminating feature is the shape. Stochastic geometry
may thus be a good approach to solve the ambiguity. It could
be initialized by the DSM and the classification to reduce
computational costs.

As a conclusion, SAR interferometry proves to be a relevant
method to compute DSM over urban areas. Some developments
are still necessary to obtain an operational processing chain. A
deep need for such a chain may arise because new SAR mis-
sions are about to be launched (TerraSAR-X, CosmoSkymed,
SAR Lupe) and will provide a large amount of interferometric
images. In this context, one can expect to get series of interfer-
ometric couples of the same area. The combination of several
interferograms over the same scene will surely improve the final
results. In particular, shadows and layovers may be better ac-
counted for in a multi-image context. This study is the first step
for a more general use of interferograms, and the results should
be considered as encouraging for future work in this field.
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