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ABSTRACT

HRHATRAC combines the last improvements regarding the

fast subspace tracking algorithms with a gradient update for

adapting the signal poles estimates. It leads to a line spec-

tral tracker which is able to robustly estimate the frequencies,

even in a noisy context, when the lines are close to each other

and when a modulation occurs. HRATRAC is also success-

fully applied in this paper to a piano note recording.

1. INTRODUCTION

HRHATRAC stands for High Resolution HArmonics TRACk-

ing and denotes an algorithm aiming at modeling musical

sounds as multiple, slowly varying, spectral lines surrounded

by an additive noise. Numerous existing systems devoted to

this task are Fourier based, similarly to the classical works of

McAuley and Quatieri [1] and Serra [2]. They often a pos-

teriori process a set of frequency candidates obtained from a

short time representation, in order to link them from frame

to frame and finally extract long-term sinusoidal components

with varying amplitude and frequency. Several techniques

have been utilized for this purpose, such as dynamic program-

ming [3], HMM [4] or particle filtering [5].

To avoid the inherent trade-off of Fourier based methods

between observation length and accuracy, the algorithm pro-

posed in this paper relies on subspace analysis (sometimes

referred to as High Resolution methods in the context of time

series spectral analysis), which locally precisely matches the

model of a sum of sinusoidal components and white noise.

These methods are sparsely used in the context of audio signal

processing partly because of their high computational cost.

However, a lot of progress has been made in the last decade to

design low-cost, adaptive subspace trackers, reaching a linear

complexity [6, 7, 8]. It is thus possible to efficiently update

the major subspace (e.g. the signal subspace) and moreover,

to update a so called spectral matrix whose eigenvalues are the

signal poles [9]. HRHATRAC is a whole processing system

for spectral line tracking, including an ad hoc prefiltering, an

adaptive ESPRIT method, and a gradient descent for adapting

the frequency estimates.

2. PRINCIPLE

Let zk = e−δk+j2πfk , k = 0 . . . r − 1 be the complex poles

of a noiseless harmonic signal, (δk, fk) ∈ R
+ × [−0.5 0.5],

and x(t) an n-dimensional vector (n ≥ r) of data at time

t ∈ Z. Subspace analysis relies on the following property

of the vector x(t): ∀t ∈ Z it belongs to the r-dimensional

subspace spanned by the basis {v(zk)}k=0...r−1; v(z) =
[
1 z . . . zn−1

]T
being the Vandermonde vector asso-

ciated with a non-zero complex number z. As a corollary,

v(zk)⊥ span(W⊥) where W denotes an n × r matrix span-

ning the signal subspace and W⊥ an n×(n−r) matrix span-

ning its orthogonal complement, referred to as the noise sub-

space.

A number of subspace analysis methods obtain the ma-

trix W from observed data by means of a Singular Value

Decomposition (SVD) of the covariance matrix. More gen-

erally, even if no structural property is required, the conve-

nient choice of an orthonormal matrix is often made. Let

V =
[
v(z0) v(z1) . . . v(zr−1)

]
be the Vandermonde

matrix of the zk’s. V and W span the same subspace but V

also satisfies the Rotational Invariance Property: V↓D = V↑
where D = diag(z0, . . . , zr−1) and V↓(resp. V↑) contains

the n − 1 first (resp. last) rows of V. This leads to the well

known ESPRIT method in which the zk’s are estimated as the

eigenvalues of the spectral matrix Φ = W
†
↓W↑ where the

superscript † denotes the pseudo-inverse.

In the context of musical signal processing, the frequency

parameters fk are assumed to evolve slowly with time and

the data are corrupted by an additive noise (at first consid-

ered as white). Consequently, the signal subspace becomes

a function of t, and the corresponding matrix will be noted

W(t). HRHATRAC implements a linear complexity sub-

space tracker (FAPI, cf. [7]) to update W(t) and Φ(t) and

tracks the pole estimates with the help of a gradient descent

precisely initialized.

3. THE SUBSPACE TRACKER

The Fast Approximated Power Iteration algorithm described

in [7] declined in its exponential version starts by a rank-one



update of the covariance matrix:

Cxx(t) = βCxx(t − 1) + x(t)x(t)H (1)

where the superscript H stands for the transpose conjugate.

The power iteration method tracks the rectangular matrix

W(t) spanning the dominant subspace of Cxx(t), using for

each time increment a two steps iteration:

1. (C) compression: Cxy(t) = Cxx(t)W(t − 1),

2. (O) orthonormalization: W(t)R(t) = Cxy(t),

where the step (O) decomposes Cxy(t) into the product be-

tween the orthonormal matrix W(t) and a square matrix

R(t), which can be triangular or positive definite for example.

The latter form is used in FAPI and R(t)H is derived as the

positive definite square root of Cxy(t)HCxy(t). When W(t)
and W(t− 1) both span the range space of Cxx(t) this leads

to the polar decomposition

R(t)H = (W(t − 1)HCxx(t)W(t − 1))Θ(t) (2)

where

Θ(t)
∆
= W(t − 1)HW(t). (3)

When dealing with noisy, possibly varying signals, W(t− 1)
does not span exactly the range space of Cxx(t). The rela-

tion (2) becomes an approximation and

W(t) ≈ W(t − 1)Θ(t). (4)

Equation (4) is interpreted as a projection approximation

since Θ defined as in (3) yields to the best approximation in

the sense of the Frobenius norm of W(t) in the range space

of W(t − 1). The rank-one update (1) is then propagated

through the equations stream leading to a rank-one update of

W(t) as described in table 1.

4. TRACKING OF THE SPECTRAL MATRIX

Taking the rotational invariance property of the signal sub-

space into account leads Roy [10] to the design of the ESPRIT

method. In [9], the spectral matrix Φ(t), defined in section 2,

whose eigenvalues are the zk’s, is rewritten as

Φ(t) = (W↓(t)
HW↓(t))

−1

︸ ︷︷ ︸

Ω(t)

W↓(t)
HW↑(t)

︸ ︷︷ ︸

Ψ(t)

.

Following the results of the preceding section, the update of

W(t) is of the form W(t) = W(t − 1) + e(t)g(t)H (see

table 1). Let define the intermediary vectors

e−(t) = W↓(t − 1)He↑(t)

e+(t) = W↑(t − 1)He↓(t)

e′+(t) = e+(t) + g(t)(e↑(t)
He↓(t))

and ν(t) the transpose conjugate of the last row of W(t). The

matrix Ψ(t) is recursively calculated according to

Table 1. Exponential window Fast API (FAPI) algorithm

Initialization :

W (0) =

[
Ir

0(n−r)×r

]

, Z(0) = Ir

For each time step do






























Input vector : x(t)
FAPI main section Cost

y(t) = W (t − 1)Hx(t) nr
h(t) = Z(t − 1) y(t) r2

g(t) =
h(t)

β+y(t)H h(t)
2r

ε2(t) = ‖x(t)‖2 − ‖y(t)‖2 n + r

τ(t) =
ε2(t)

1+ε2(t)‖g(t)‖2+
√

1+ε2(t)‖g(t)‖2
r

η(t) = 1 − τ(t) ‖g(t)‖2 1
y′(t) = η(t) y(t) + τ(t) g(t) 2r

h′(t) = Z(t − 1)Hy′(t) r2

ε(t) =
τ(t)
η(t)

(

Z(t − 1)g(t) −
(

h′(t)Hg(t)
)

g(t)
)

r2 + 3r

Z(t) = 1
β

(

Z(t − 1) − g(t) h′(t)H + ε(t) g(t)H
)

2r2

e(t) = η(t) x(t) − W (t − 1) y′(t) nr + n

W (t) = W (t − 1) + e(t) g(t)H nr

Ψ(t) = Ψ(t − 1) + e−(t)g(t)H + g(t)e′+(t).

This leads to an update formula for Φ(t):

Φ(t) = Ψ(t) +
1

1− ‖ ν(t) ‖2
ν(t)Ψ(t)ν(t)H .

These results are gathered in table 2.

Table 2. Adaptive computation of the spectral matrix

Cost

e−(t) = W ↓(t − 1)He↑(t) nr
e+(t) = W ↑(t − 1)He↓(t) nr
e′

+(t) = e+(t) + g(t)
(
e↑(t)He↓(t)

)
n

Ψ(t) = Ψ(t − 1) + e−(t) g(t)H + g(t) e′
+(t)H 2r2

ϕ(t) = Ψ(t)Hν(t) r2

Φ(t) = Ψ(t) + 1
1−||ν(t)||2 ν(t)ϕ(t)H r2

5. ADAPTING THE POLES

An EigenValue Decomposition (EVD) of Φ(t) gives the esti-

mates of the zk’s at each time step. A postprocessing is nev-

ertheless necessary to compute the spectral lines, i.e. group-

ing the r frequency estimates fk = ∠zk/(2π) into r classes.

To avoid dilemnae on the choice of appropriate heuristics for

modeling the spectral trajectories or for adjusting a weight

function to link the r new fk(t) to the r old values, a gra-

dient approach is adopted below to directly update the zk’s.

It consists of the sequential tracking of the diagonal matrix

Λ(t) containing the eigenvalues of Φ(t) in first place, then

the tracking of the matrix V(t) containing the corresponding

eigenvectors.



5.1. Iteration for Λ(t)

The cost function to be minimized for estimating Λ(t) is de-

fined as the squared Frobenius norm of the estimation error:

J(Λ) = tr{EL(Λ)HEL(Λ)}

where the estimation error is simply given by

EL(Λ) = Λ − diag
(
V(t − 1)−1Φ(t)V(t − 1)

)
.

The gradient descent of J(Λ) leads to an adaptation in the

direction opposite to the estimation error:

Λ(t) = (1−µL)Λ(t−1)+µL diag
(
V(t − 1)−1Φ(t)V(t − 1)

)

where 0 < µL < 1.

5.2. Iteration for V(t)

Once Λ(t) is estimated, the cost function to be minimized for

the estimation of V(t) is defined as the squared Frobenius

norm of the estimation error: J(V) = tr{EV (V)HEV (V)}
where the estimation error is now defined as

EV (V) = V − Φ(t)VΛ(t)−1.

The expression of the gradient of J(V) with respect to V

(element by element, including the complex case) leads to the

following recursion1:

V(t) = (1 − µV )V(t − 1)+

µV

(
Φ(t)V(t − 1)Λ(t)−1 + Φ(t)HEV (V(t − 1))Λ(t)−H

)

where 0 < µV < 1. Note that for better numerical stability,

the columns of V(t) can be normalized after each iteration.

6. SIMULATIONS AND PERFORMANCE

The whole algorithm has a linear complexity of 5nr. This

makes the system suitable for real time applications. Since

musical signal analysis is targeted, the testing scenario is

based on modulations and frequency resolution trade-off en-

countered in the field. The results are compared to those of

an exact EVD of the spectral matrix Φ, denoted by the su-

perscript EVD. For instance, f̂k

EVD
is the fk estimate using

an exact EVD. Note that this estimation leads to a pointwise

representation of the frequency estimates which in this testing

example will be used as the baseline estimation.

The signal is a sum of two close modulated components

and an additive white complex noise b(t):

x(t) = U(t − t0)(exp(jφ1(t) + exp(jφ2(t)) + b(t), (5)

1in this demonstration, it is worth noting that for two matrices A and B

tr(AHB) defines a scalar product aHb where a et b are the column vectors

obtained by rearranging columnwise the coefficients of A and B; the result

can then be obtained by a first order perturbation of J(V).

where f1(t) = φ′
1(t)/(2π) = 0.1(1 + 0.1 cos(2πfmt)),

fm = 510−4 and f2(t) = 1.1f1(t). U(t) denotes the unit

step function. The SNR is fixed to 9 dB. The subspace tracker

uses the parameters n = 31, r = 2 and β = 0.99 while the

gradient steps µL and µV both equal 0.99. The results are rep-

resented in figure 1. The spectral lines obtained by HRHA-

TRAC nearly coincide with the f̂k

EVD
estimates in the time

range where a sufficient degree of convergence is reached.

The noticeable differences with the ground truth can thus be

attributed to the deviation of the observed data from the model

of stationary sinusoidal components.
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Fig. 1. Results for 2 modulated sinusoids.
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Fig. 2. Representation of the error ‖Φ(t)V(t) − V(t)Λ(t)‖
in the coupled estimation of the eigenvalues matrix Λ(t) and

the eigenbasis V(t).

Figure 2 shows the gradient capability to accurately track

the eigenvalues and eigenvectors of the spectral matrix. This

plot demonstrates the fast convergence property of the gradi-

ent method2, since the error on the eigenparameters abruptly

falls after the start of both sinusoids. The frequency estima-

tion is then comparable to that of an exact ESPRIT solution.

Moreover, some favorable aspects of the whole algorithm per-

formance are revealed in this example: despite a tight fre-

quency discrepency between the two components (under the

Fourier resolution) and the low SNR compared to that of usual

audio signals, the estimates remain accurately locked on the

true spectral lines.

2We can obtain nearly the same results for µL and µV around 0.5



7. A REAL WORLD CASE

In this section, an E6 piano note is analyzed. The critical part

of the work lies in the deviation that audio signals present

from the hypothesis of white surrounding noise. A carefully

designed preprocessing is presented below to circumvent this

difficulty.

7.1. Preprocessing

The whitening of the noise is achieved in 4 steps:

1- a median filtering of the periodogram of the signal

which leads to an estimate of the noise spectral density,

2- an inverse Fourier transform which provides an esti-

mate of the autocovariance sequence,

3- an AR12 modeling of the noise spectrum,

4- a filtering of the data by a FIR filter defined as the in-

verse of the estimated AR model.

The signal power spectral density after whitening is rep-

resented in figure 3.
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Fig. 3. Power spectral density before and after preprocessing.

7.2. Results

The figures 4 and 5 show the spectrogram and the HRHA-

TRAC analysis of the piano note. The tracking is applied

to the analytic complex signal associated to the preprocessed

real signal with r = 9, n = 101. The spectral line tracking

leads to 6 lines clearly identified as the 6 harmonics of the

note and one line not in relation with the others (perhaps a

compression harmonic). The eighth and ninth lines (in gray)

are irregular enough to be labeled as "spurious".

8. CONCLUSIONS

A whole spectral line tracker has been presented. It benefits

from the high resolution property of the subspace methods

while being adaptive with a linear complexity. A successful

application to a piano sound ends the presentation.
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Fig. 4. Spectrogram of an E6 piano note for N = 256 and

Hann windowing with 50% overlap.
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Fig. 5. Spectral line tracking for a E6 piano note.

9. REFERENCES

[1] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis based

on a sinusoidal representation,” IEEE Trans. Acoust., Speech, Signal

Processing, vol. ASSP-34, no. 4, pp. 744–754, Aug 1986.

[2] X. Serra and J. Smith, “Spectral modeling synthesis: A sound analysis-

/synthesis system based on a deterministic plus stochastic decomposi-

tion,” Computer Music J., vol. 14, no. 4, pp. 12–24, Winter 1990.

[3] Mathieu Lagrange, Sylvain Marchand, and Jean-Bernard Rault,

“Tracking partials for the sinusoidal modeling of polyphonic sounds,”

Proc. IEEE ICASSP-05, vol. III, pp. 229–232, 2005.

[4] P. Depalle, G. Garcia, and X Rodet, “Tracking of partials for additive

sound synthesis using hidden Markov models,” Proc. IEEE ICASSP-

93, vol. 1, Apr 1993.

[5] C. Dubois, M. Davy, and J. Idier, “Tracking of time-frequency com-

ponents using particle filtering,” in Proc. IEEE ICASSP, Philadelphia,

PA, USA, Mar. 2005.

[6] K. Abed-Meraim, A. Chkeif, and Y. Hua, “Fast orthonormal PAST

algorithm,” IEEE Signal Proc. Letters, vol. 7, no. 3, pp. 60–62, Mar.

2000.

[7] R. Badeau, B. David, and G. Richard, “Fast Approximated Power Iter-

ation Subspace Tracking,” IEEE Trans. Signal Processing, vol. 53, no.

8, Aug. 2005.

[8] R. Badeau, B. David, and G. Richard, “Yet another subspace tracker,”

in ICASSP’05, Philadelphie, Pennsylvanie, USA, mar 2005, vol. 4, pp.

329–332.

[9] R. Badeau, G. Richard, and B. David, “Fast adaptive esprit algorithm,”

in SSP’05, Bordeaux, France, jul 2005.

[10] R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parameters via

Rotational Invariance Techniques,” IEEE Trans. Acoust., Speech, Sig-

nal Processing, vol. 37, no. 7, pp. 984–995, July 1989.


