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High resolution spectral analysis of mixtures of
complex exponentials modulated by polynomials

Roland BadeauMember, IEEE, Bertrand David, and Gaél RicharMember, IEEE

Abstract— High resolution methods such as the ESPRIT al- general Polynomial Amplitude Complex Exponentials (PACE)
gorithm are of major interest for estimating discrete spectra, model proposed in this paper encompasses the multiple poles
since they overcome the resolution limit of the Fourier transform case. It describes a more general class of signals, ingplvin

and provide very accurate estimates of the signal parameters. both litud df dulati d leads t
In signal processing literature, most contributions focus on oth amplitude and frequency modulations, and ieads to an

the estimation of exponentially modulated sinusoids in a noisy alternative interpretation of the frequency estimatesiioed

signal. In this paper, we introduce a more general class of by means of high resolution methods. A physical example
signals, involving both amplitude and frequency modulations. of the PACE model is the critically damped simple harmonic
We show that this Polynomial Amplitude Complex Exponentials motion of the spring / mass system, which involves a double

(PACE) model is the most general model tractable by high le. Bel let timati h . ddb
resolution methods. We develop a generalized ESPRIT algorithm pole. below, a complete estimation scheme IS propose ase

for estimating the signal parameters, and we show that this model €ither on linear prediction or on the ESPRIT algorithm.

can be characterized by means of a geometrical criterion. The paper is organized as follows. In section Il, the sotutio
Index Terms— high resolution, rotational invariance property, to general hor_nog_ene_ous linear recursions 1s dISCUSSGQ& and
ESPRIT, polynomial modulation, multiple eigenvalues full parameterization is proposed. Then, it is demonstkate

section 1l that a Hankel data matrix containing successive
samples of the signal is rank deficient and that its range
|. INTRODUCTION space, known as theignal subspages spanned by a so-called
He foundation of high resolution methods dates badigscal-Vandermondenatrix. In section IV, the generalized
T from the work by Prony [1] published in 1795, whichESPRIT method for estimating the PACE signal model is
aims at estimating a sum of exponentials via linear preaticti Presented, and its performance regarding the estimation of
techniques. More recently, this approach was further tivesamplitude and frequency modulated sinusoids is illustrate
gated by Pisarenko [2] for estimating sinusoids in noisettf@n Section VI. Finally, the main conclusions of this paper are
other hand, modern high resolution methods rely on Subspaggmmarized in section VI, and some theoretical results are
based signal analysis. This is the case of the MUltiple Sigrifesented in the appendix.
Classification (MUSIC) algorithm [3] and its variant root-
MUSIC [4], the Toeplitz Approximation Method (TAM) [5], II. DISCRETE SIGNAL MODEL
the Estimation of Signal Parameters via Rotational Inverga A Homogeneous linear recursions
Techniques (LS-ESPRIT) [6] and its variants TLS-ESPRIT [7] High resolution methods are historically linked to linear
and PRO-ESPRIT [8]. In fact, all these estimation methods d'Q . . y
are also suitable for the more general Exponential Sinadsoié)re iction tet_:hnlq_ues [11, _[2]’ [12]. In(.Jleed, all of therryre
. S . n the following discrete signal model:
Model (ESM), which was successfully applied in the field o?
audio signal processing for example [9]-[11]. Additiogall K-l
specific estimation techniques were designed for the ESM, s(t) = Z agzy! 1)
such as the Minimum-Norm (KT) method [12], the Matrix k=0
Pencil method [13] and the modified KT (MKT) method [14]where K € N*, Vk € {0...K — 1} a3 € C, and all the
A survey of subspace-based signal analysis can be foymwlesz, € C* are distinct. It is well known that such a signal
in [15]. A different approach for estimating the parametersatisfies an homogeneous linear recursion of the form
of the ESM is based on matching pursuit algorithms [16].
In signal processing literature, the ESM is generally ansi st) +prs(t—1)+... +pr st - K)=0
ered as the general model tractable by high resolution rdsthowherep,, . .., px, are the coefficients of the polynomial
However, it can be shown that this model is restricted to o1

signals which only contain single poles. Conversely, theemo Pl] = H (2 — 2) @)
Roland Badeau, Bertrand David and Gaél Richard are with ggaBment k=0
of Signal and Image Processing, Ecole Nationale SupérieeseTeélécom- K
munications (ENST), Paris, France. E-mail: [roland.badémuirand.david, written in the formP[z] = > p(K_k)zk, wherepy = 1 and
gael.richard]@enst.fr. k=0

(©2006 |IEEE. Personal use of this material is permitted. Howeemis- px # 0. Based on this observation, the estimation methods

sion to reprint/republish this material for advertising oomotional purposes proposed in [1] [2] [12] consist in estimating the pre'cdjnt
or for creating new collective works for resale or redigitibn to servers or ’ ’

lists, or to reuse any copyrighted component of this work hreotvorks must p0|yn0m|alp_[z} from the samples of the S|gnal, whose roots
be obtained from the IEEE. form the estimated poles.
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If the signal is modeled as a sum of real or complex sinu- The family{ F},,[X]},,>0 is @ basis ofC[X] since the degree
soids, the poles are supposed to belong to the unit circle [ F,,[X] is m for all m > 0. In addition, these polynomials
[2]. Thus each pole; can be written in the form,, = ¢??*/+  satisfy for allm € Z the linear recursion
where f;, € R is the frequency of thé'" sinusoid. More -
generally, if the signal is modeled as a sum of exponentially Fnlt + 1] = Fu[t] + Foa[t] ¥t € 2. ©)
modulated sinusoids (ESM), the poles can be anywhere in théThe polynomialsay, of order M, — 1 can be decomposed
complex plane except zero [12]. In this case, each pplean into the basis{F,,,[X]}m>0: VE € {0... K — 1},
be written in the formz;, = % e??™fk whered, € R is the M1

. b . : ;
damping factor of the: smgsmd. In p_e_lrtlcular, po_les with ap[X] = Z O‘Ek,m)Fm[X]
the same polar angle and different radii are associatedeto th
same frequency. , .

Nevertheless, the ESM does not correspond to the gené"r’glerbevm < _{O"'_ M’;]_fl}’ﬁf‘(k,m) € C, so that equation (4)

solution of homogeneous linear recursions, since in theigén can be rewritten in the for

m=0

case a prediction polynomial can have multiple roots. To K1 Ml m
handle this case, equation (2) must be replaced by s(t) = Z Z e, Fom[1] 25 (6)
k=0 m=0
K—-1
Pl = H (2 — )M 3) whereVk € {0... K — 1}, Vm € {0, My — 1}, a@p,m) =

o) . 2™ is a complex amplitude.

This signal model can be extended by introducing an
whereVk € {0...K — 1}, M), € N* can be greater than additive noise. More precisely, the observed signél) can
1, so that the degree aP[z] is r = Kil M, > K. Thus pe mode;led as the sum of thg deter'minist'ic sigttal defined

k=0 in equation (6), plus an additive white nois€t) of variance
the prediction polynomial can be written in the forR{z] = 52: 2(¢) = s(t) + w(t).
XT: p(r_k)zk, wherepy = 1 andp, # 0. The general solution ~ Therefore, the parameters of the complete model are:
k=0 « the orderK and the multiplicities{ My }rco...x—1}
« the K complex polesy,
s)+prs(t—1)+...+p.s(t—7)=0 o ther complex amplitudesyy ),
« the variancer2.

High resolution methods based on linear prediction, such

k=0

to the corresponding linear recursion

is obtained by turning equation (1) into

K—1 as [1], [2], [12], can be used directly to estimate the parame
s(t) = Z aglt] zi* (4) ters K, M; and z,, which are completely characterized by
k=0 the prediction polynomial. However, in a noisy context, the
wherevk € {0,..., K —1}, a;[t] is a complex polynomial of estimated prediction polynomial does not have multipleésoo

order less or equal t87, — 1 (see [17, pp. 33] for a proof). In This problem will be discussed in section V-A.
this paper, the signal model in equation (4) is referred tthas Remark.The modeling order for both the ESM and the PACE
Polynomial Amplitude Complex Exponentials (PACE) modemodel is the order of the prediction polynomi(z]. Thus it
In particular, this model can associate several singlesptle Would be interesting to compare the numbers of parameters
a single frequency (as for the ESM), as well as multiple polédvolved by the two models for a same modeling order
(contrary to the ESM). Indeed, the PACE model is interesting for coding applicatio
because all the poles of multiplicity M, > 1 only need to be
coded one time. However, the multipliciti€s/y, } ..c(o... a7, -1}
also have to be coded, which is not the case for the ESM,
The signal model in equation (4) is not yet complete, sincevehich only contains single poles. More precisely, the PACE
full parameterization would additionally require the at®bf a model involvesK +1 integers, plu2 K +2r+1 real numbers.
polynomial basis over whichy[¢] could be projected. Below, As a comparison, the ESM model involves 1 integer (the model
we focus on a particular polynomial basis which satisfiesader), plus4r + 1 real numbers. We can conclude that the
simple linear recursion. PACE model involves less parameters than the ESM when
K < %r. Besides, integers can be coded with less bits than
real numbers, which suggests that the PACE model can also
be interesting even if this inequality is not satisfied.

B. Full parameterization of the signal model

Definition 1.1 (Falling factorial) For all m € Z, the falling
factorial of orderm is the polynomidl

0 if m<0
Py 1 ifm=20 I11. M ATRIX MODEL
mlX] = 1 ”i:[l(X —m!) ifm>0 As opposed to linear prediction techniques, modern high
™ izo resolution methodse(g.[3], [6], [13]) rely on matrix analysis

(more precisely on the particular structure of the data imjatr
INote that this definition does not exactly match the classikinition
of the falling factorial [18], [19], from which the multiplative factor% is 2The intentional introduction of the time shift-m will be self-explanatory

missing. in the following developments.
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A. Definition and range space of the data matrix Definition Ill.4 (Pascal-Vandermonde matricegpt K € N*.

The samples of a discrete signdk) can be arranged into For all & 571{0..1( — 1} let z € Cand My € N".
a Hankel data matrix witln € N* rows andl € N* columns: Let » £ Y M,. The Pascal-Vandermonde matrix is the

k=0
n x r matrix formed by concatenating the generalized Pascal
s(t—1+1) - s(t—1) s(t) matricesC'y; (zx) :

® s(t—=14+2) - s(t) s(t+1)
S(t) = . . . n n n
: : : Vi= [CMO(ZO)v Sy CMK_l(Z(K—l))] .
st—=1l+mn) - s(t+n—-2) s(t+n-—-1)
7

. . Exampld”5 If K =4, {Mo, My, My, Mg} = {17 3,1, 2},

The following theorem shows that if the matif(t) has a g4y — = 7
deficient rank- < min(n, /) then the observed signal satisfies

. i . | 1 | .
the noiseless model (6) under a simple condition. 1410 0 L0

20 121 1 0 122 123 1
Thgorrtlam 1.1 I(Equ(;vell)lence of the low-rank dHankel structure 202lz12 22 1 IZ22 I232 225
and the signal model)Letn > 2, 1 > 2, andr an integer 7 31,3 2 I, 31,3 2
. = | 20° 21" 3217 32 297 123° 3z
such thatr < n andr < I. Let S(t), be the matrix extracted v L e TN

2’04|2’14 42’13 6212 :224|234 423

from S(t) by deleting the last row. Similarly, le§(t); be |

! . . 5 5 4 3 5 5 4
the matrix extracted fron$(t) by deleting the first row. The 20’1217 5217 102171297 123” 523
following statements are equivalent: [ 20%121° 621° 1521%125%125° 6 25° |
1) The matrixS(t) has rankr, and the extracted matrices The following proposition generalizes a classical result
S(t), and S(t); also have rank:. about the determinant of Vandermonde matrices [22, pp. 29].

2) The signals(t) can be written in the forn{6) on the

interval [t —{+1...t+n—1], andvk € {0... K —1}, Proposition 111.6 (Determinant and rank of Pascal-Vander-

monde matrices) The determinant of the square Pascal-

Ak 1) 70 Vandermonde matri®¥" is
The proof of this theorem is quite complex and can be found K—1
in [20]. H (20, — 25, )M Moz
Below, we only assume thai(t) can be written in the ki, k2 =0
form (6) on the intervallt — 1 + 1...t + n — 1], without ki < ks

supposing that’k € {0... K — 1}, ag, a,—1) # 0. In order  As a result, then x r Pascal-Vandermonde matrix™ (with

to characterize the range spaceSift), we need to introduce ,, > ) has rank r if and only if the K parameters
the so-calledjeneralized PascaindPascal-Vandermond®a- ., ... . _; are distinct.

trices. First, generalized Pascal matrices form a gezetain
of the well known lower triangular Pascal matricé’s whose
definition can be found in [21].

The proof of this proposition can be found in [20].

Definition 111.2 (Generalized Pascal matriceset » € C and B. Factorization of the da.ta. TT]atI‘IX o
M € N*. The generalized Pascal matrix denot@, (=) is a Based on the above definitions, a factorization of the Hankel

nx M matrix whose coefficients ate; (z)(; ;) = Fj[i] 2~ data matrix is proposed in this sectforProposition 111.7 is a
forallic {0...n—1}andj e {0...M — 1} generalization of the result presented in [13] to the mildtip
poles case.

Examplelll.3. If M =3 andn =7, - o _
Proposition 111.7 (Factorization of the data matrixA n x [

1 0 0 Hankel matrix.S(t) of the form(7) where s(t) is the signal
z 1 0 defined in equatiori6) can be factorized in the form
22 2z 1 T
Ci(z)=| 2 322 3z S(t)=v"Dt) V' (8)
24 423 622 . : .
5 4 3 where D(t) is ther x r block-diagonal matrix
z? 5z% 10z
| 2% 62° 152% H(t) 0 0
A Pascal-Vandermonde matrix is formed by concatenating D(t) = 0 Hi(t) - : 9)
several generalized Pascal matrices. Thus the followirig-de : 0
ition generalizes the classical Vandermonde structure jp2 0 0 H1)(t)

29]. It can also be found in [23].

) o ) ) 5Such a factorization was already established by Vandeeoardi Boley

3'A lower triangular Pascal matrix is a square generalizedd@asatrix for in [23], [24]. However, the developments presented here oglydifferent

which z = 1. concepts. Moreover, they lead to an explicit formulationhaf block-diagonal
4 2 =0, we defineC?;(0)(;,4y = 1 ¥4, andVi # j, C,(0)(; ;) = 0.  factor D(t) (see proposition 111.7).
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whosek'" block H ,(t) is the My, x M, upper anti-triangular where the data matriX () is defined from the noisy signal

Hankel matrix x(t) in the same way asS(¢) in equation (7). Since the
Broy(®)  Baany®) - Be,ar—1)(t) additive noisew(t) is white and centered, of varianeé, the
H(t) = B,y (1) 0 expectation matrixR...(t) = E[R,,(t)] satisfies

: . - : R, (t) = Ry, (t) + 0*I,.

Bk, nr,—1) (1) 0 B 0

whose coefficients are, for all € {0... K — 1} andm’ € Thls last equation shows that all the ggenvectongJ(t) are
{0... M, — 1}, eigenvectors oR, . (t), and that the eigenvalues &, (t) are
equal to those ofR,,(t) plus o2. Therefore, the range space
R,.(t) (called signal subspace) is also thedimensional
principal subspace oR,..(t), i.e.the eigensubspace &....(t)

The proof of proposition II.7 is presented in appendix A?hsjr? ngat((ta:etg ihf Otilhgeernc\)/?:euseEe?;gm:(?ﬁ;tlug% strictly higher

The following corollary is the foundation of the estimation
technique presented in section IV.

Corollary 1.8 (Rank of the data matrix)A n x [ Hankel B. Rotational Invariance Property
matrix S(t) of the form(7), wheres(t) is the signal defined
in equation(6), has rankr if and only if

My —1
5k,m’(t) = Z O‘(k,m)meml [t =1+ 1]Zktil+17(’m77n ) (10)

m=m'

The ESPRIT estimation method relies on a particular
property of Vandermonde matrices known as tbetional
Vk e {0...K —1}, agm,_1) #0. (11) invariance [6], which reflects the invariance of the signal

subspace to time shifts. Theorem IV.1 generalizes thisgtgp
The proof of corollary 111.8 can be found in appendix Ato Pascal-Vandermonde matrices.

In section IV, it is always supposed that condition (11) is ) )
satisfied. This condition means that € {0,..., K —1}, the Theorem IV.1 (Rotational Invariance Property of Pascal-Van-

polynomial . [t] in equation (4) is of ordef;, — 1. dermonde matrices)Suppose that. > 2. Let V' be the
matrix extracted fromV" by deleting the last row. Similarly,
let V¥ be the matrix extracted frofw™ by deleting the first

V. ESTIMATION OF THE MODEL PARAMETERS " n
: ) o row. ThenV| and Vi span the same subspace, and
Below, the generalized ESPRIT algorithm for estimating the

poles independently from the complex amplitudes is presknt T=ViJ (15)
Then methods for estimating the model orderand the
complex amplitudes are briefly reviewed in section IV-D. whereJ is ther x r block-diagonal matrix

i i JMO (Zo) 0 ce 0
A. Low-rank structure of the correlation matrix )
Subspace-based methods rely on the particular structure off = 0 T (1)
the correlation matrix of the signalt), which is defined as : 0
follows : 1 0 . 0 JJ\/[(K—I) (Z(K_1))
R..(t) =5 S(t) S(t). (12) (16)
! whosek™ block J yy, (21) is the M, x M, Jordan block
Substituting equation (8) into equation (12) yields thédiet i i
ing factorization of R (t): z 1 0o ... 0
R (t)=V" PtV (13) 0 2z 1
where P(t) is ther x r time-varying positive definite matrix Jm(z)=10 0 2z . 0
_ 1 1T 31" H : |
P(t) = 7D(t)V V' D(t)". 0 0 0 = |

In particular, equation (13) shows that thex r matrix V"

spans the-dimepsional range spac_erss(t),Which is cgll_ed Theorem IV.1 is a corollary of lemma B.1, presented in
signal subspacen the literature. SinceRs,(t) is a positive appendix B. The interesting fact in theorem IV.1 is that

semidefinite_ ma.trix, it is diagonalizable i.n an orthonorm.aéquation (15) involves a Jordan mattfx which characterizes
basis, and its eigenvalues are non-negative. MOreovere it ojas., and their multiplicity M;,. As shown below, the
R,,(t) has rankr < n, r of its eigenvalues are pOSItIVe’generalized ESPRIT algorithm consists in computih@s a

whgref';l\s Ithm - othgr ones are fgero.h lat by-product of the Jordan canonical decomposftion a so-
Similarly to equation (12), define the x n correlation called spectral matrix

matrix of the noisy signak(t):
=~ 1

Ro.(t) = 7 X(0) X(1)" (14)

6See [22, pp. 121-142] for a definition of the Jordan canordeabmpo-
sition.
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C. The generalized ESPRIT method V. PERTURBATION ANALYSIS

In practice, the Pascal-Vandermonde mat#X' is un- In this section, we illustrate how sensitive single and
known, but an x r matrix W (t) spanning the signal subspacemultiple poles are to perturbations. Linear predictiosdzh
can be estimated by computing the eigenvalue decomposititigh resolution methods are analyzed in section V-A, and the
of R,.(t), or the singular value decomposition &f(t), or by generalized ESPRIT method is analyzed in section V-B.
means of subspace tracking techniques [25]-[27]. SWkte)
andV™ span the same subspace, there is a non-singular magixPerturbation of the prediction polynomial

G(t) of dimensionr x i such that As mentioned in section 1I-B, high resolution methods

V' =W () G(t). (17) based on linear prediction, such as [_1], [2], [12], estimate
the parameters(, M, and z, by computing the roots of the
Substituting equation (17) into equation (15) shows ¥att) prediction polynomialP[t].
satisfies an equation similar to equation (15): In practice, contrary tcP[t], the estimated prediction poly-
nomial does not have multiple roots. Indeed, the additivieeno
W(t), =W(t), ®(¢ . o ' .
(s () 2 (t) w(t) perturbs the estimated coefficients, so that each multiple
where ®(t), herein called thespectral matrix is defined by root of P[¢] is scattered into several single roots. The estimated
its Jordan canonical decomposition: prediction polynomial is denote®.[z] = Plz] + ¢ AP|z],
a . where AP[z] is a polynomial of order lower than, ande
() =G IGE) (18) is supposed to be small. In practice, the deviatioh P[]

Finally, the generalized ESPRIT algorithm consists of théepends both on the noise(t) and on the particular method
following steps: used to estimate the prediction polynomial, such as [1], [2]
« estimate a basiﬁ\/(t) ~of the signal subspace, [12].
« compute an estimatob(t) of the spectral matrix, using Proposition V.1. Let z, be a root of multiplicityM; € N*
a LS or TLS’ technique. of the r*" order polynomialP[z]. For all € > 0, let P.[z] =
- compute the eigenvalues @ (¢) from which the esti- P[z] + ¢ AP[z], whereAP[z] is a polynomial of order lower
mated poles and their multiplicities can be extracted. thanr. Suppose that\ P[z;] # 0. Then there exists a positive
Note that in a noisy context, the estimated spectral matex such that for alls < ¢, there are exactly\/;, roots of P.[z],
does not have multiple eigenvalues in practice, and the getenoted{z( ()} which admit the first-order

. . . oo . ' Jme{0...M—1}’
eralized ESPRIT algorithm cannot be applied as it is. Thisactional expansion ’

problem will be discussed in section V-B. o o 2
Z(k,m) (e)=zk+eVe Az e "M + O (E My ) (29)

D. Estimation of the other parameters where Az, is an arbitrary M,,"" root of the complex number
We now focus on the estimation of the model ordeand M, AP[z]
the complex amplitude&y ,,. (Azg) ™ =~ L PO [,]
) Mp!

1) Estimation of the modeling ordefn the above discus- _ o _
sion, the model order is supposed to be known, which is not theThiS proposition is related to a classical result aboutalge
case in practice. Many methods were proposed in the literatdpraic functions [34, pp. 64-66]. Note that in equation (18 t
for estimating the number of sinusoids in white noise. TH¥St order perturbation of;. is homogeneous and Isotropic,
most classical ones are the maximum likelihood method [28p that theM,. perturbed roots form the vertices of M,"
and the information theoretic criteria, among which the ikka ©rder regular polygon in the complex plane. This may be a way
Information Criterion (AIC) and the Maximum Description®f discriminating between several perturbed single pofesa
length (MDL) [29], and their generalization known as théingle perturbed multiple pole (whe¥t;, > 3). Multiple poles
Efficient Detection Criterion [30]. In [31], [32], we proped appear to be more sensitive to perturbations tr}an singkespol
a conceptually different approach which minimizes the fr&ince the first order term in equation (19)4ds’. In fact,
quency estimation bias. This method can be applied directl}is apparent sensitivity can be circumvented by taking the
for estimating the order of the PACE signal model. multiplicity structure of the polynomiaP’[z] in equation (3)

2) Estimation of the complex amplitudesThe Least into account [35].

Squares (LS) and Weighted Least Squares (WLS) are very
classical methods for estimating the amplitudes of sirdssoiB. Perturbation of the spectral matrix

of known frequencies corrupted by noise. A good survey of |n the case of the generalized ESPRIT method, the poles are
such techniques was proposed in [33]. Again, these methegiiained by computing the eigenvalues of the spectral matri
can be adapted in a straight manner for estimating the compig(¢). In practice, contrary to®(t), the estimated spectral
amplitudes of the PACE signal model. matrix does not have multiple eigenvalues. As mentioned
"The classical LS-ESPRIT method [6] compuist) — /(&) W(t) in sectipp V—A.in the case of linear prediction techniques,
(where the symbof denotes the Moore-Penrose pseu do_inversé). T the additive noiseu(t) perturbs the estimation, so that each

8The TLS-ESPRIT algorithm estimateB(t) as the solution of a Total multlple eigenvalue of®(¢) is scattered into several single
Least Squares (TLS) minimization problem [7]. elgenvalues.
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The estimated spectral matrix is denot®d(t) = ®(¢) + » compute the arithmetic mean of the estimated eigenvalues
e A®(t), whereAd(t) is ar x r matrix, andz is supposed to associated to multiple poles.

be small. In practice, the deviatianA®(t) depends both on Since the computational complexity of the first step is much
the noisew(t) and on the particular method used to estimai@igher than that of the second step, the overall compleity o
the spectral matrix, such as [6], [7]. this generalized ESPRIT algorithm is the same as that of the

Proposition V.2. Let =, be a non-derogatofyeigenvalue of classical ESPRIT algorithm.

multiplicity M € N* of ther x r matrix ®(¢), whose Jordan

canonical form is®(t) = G(t) J G(t)~*. For all € > 0, let VI. SIMULATION RESULTS

B (1) = ®(t)+ < A®(t), whereA®(¢) is an arbitrary r x r In this section, the ESPRIT method is applied to real-

matrix. Then define the x r matrix AJ = G(¢t)"'A® G(t). valued signals. The real-valued signal model is presented

Let AJ,, be the element aAJ which beIongs to the row of in section VI-A. Then section VI-B illustrates a case of
k=l polynomial amplitude modulation, and section VI-C illits

index Z M. and the column of mdex/Z My = 1. a case of both amplitude and frequency modulation.

Suppose that\ J;, # 0. Then there eX|sts a positivg such
that for all ¢ < 50 there are exactly\/;, eigenvalues ofb.(¢),
denoted{z(k m)( )}me{0 M1} which admit the first-order
fractional expansion

A. Real valued signal model

In this section the signal model introduced in section II-A
is applied to the particular case of real-valued signalecé&i

o (&) = 20+ eﬁAzk ST O (gﬁk) (20) the prediction polynomial has real-valued coefficientsraots
’ can be partitioned into real poles and complex conjugates pai
where Az, is an arbitrary M, root of A.J,. of poles of same multiplicity. Thus, by grouping poles whose

polar angles have the same absolute value, equation (4) can
This proposition is a corollary of theorem 2.1 in [36], iNhe rewritten in the form

the particular case of non-derogatory eigenvalues. It®fpro
can be found in [20]. IfM};, > 1, the first order perturbation P
of 2z, in equation (20) looks like that in equation (19) @ .4 — an(t) cos(2m 1) + b, (£) sin(2r £ ¢ 21
it is homogeneous and isotropic, so that thg perturbed () pz(:) p(t) cos(@mfy 1) +B,(8) sin(rfp ) (21)
eigenvalues form the vertices of\d,,'" order regular polygon

g ’ 9 Povg here P < K is the number of distinct frequencies, <

in the complex plane. As mentioned in section V-A, multipl
! piex p ! ! ! " |p§ 5], andvp € {0, .. — 1}, botha,(t) andb,(t) belong

poles appear to be more sensitive to perturba‘uons thatesing’ 2
a class of parametrlc functions. More preusely a fuomcti

poles, since the first order term in equation (203115 . In fact, ét ) of this class has the form

this apparent sensitivity can be circumvented by computi
the arithmetic mean of the estimated eigenvalues, as shown i Q-1
proposition V.3. g(t) = ) Pylt] exp(éqt)
My, a=0
Proposition V.3. Let z;(¢) = 5 Z 2(k,m)(€). LEtAJ) be where Q@ € N* is the number of poles of the same polar
the M, x M, matrix extracted fromAJ which corresponds angle, all the damping factor§, € R are distinct, and
Vq € {0,... — 1}, P, is a polynomlal with real valued

to the rows and columns of |nd|ce§: My 1o ZO My — 1. coefficients. Then equatlon (21) can be written in the form

=0
Suppose thatrace(AJy) # 0. Then for alle < ¢, the
functione — z;(e) admits the first order expansion Z Ap(t) cos 2mfpt + pp(t)) (22)

200 (€) = 21 + €Az, + O (€2
(om) (€) = 70+ €A () where the time-varying amplitudd,,(¢) and phasep,(t) of

whereAzy = - trace(AJy). the p*® sinusoid satisfy the equations
The proof of proposition V.3 can be found in [20]. This { ap(t) = Ap(t)cos(pp(t)) (23)
proposition confirms that multiple poles are not more siesit bp(t) = —Ap(t)sin(pp(t))

to perturbations than single poles. Moreover, muIUpIeepoIWhose solutions afé
can be estimated by computing the arithmetic mean of the

scattered eigenvalues. Thus the generalized ESPRIT tilgori Ap(t) = ap(t)* +bp(t)?

) : o aeEt : by (1) (24)
presented in section IV-C can be simplified in the following pp(t) = —2arctan (m) .
way :

Note that the signal model in equation (22) looks like that
f McAulay and Quatieri [37]. However, in [37},(¢) and

. . do
@p(t) are non-parametric functions such thag(t) and =7z

o apply the classical ESPRIT algorithm for estimating th8
eigenvalues of the spectral matrix,

9An eigenvalue is non-derogatory if and only if it appears imyoone e ) o
Jordan block (see.g.[36] for more details). Since the complex poles are ONote that arCtan( ap(®) ) = wp(t) only if ¢p(t) € |- bE 5[
distinct, all the eigenvalues in the Jordan form (16) are-derogatory. Conversely, the proposed inversion formula is valid forgll(t) € |—m, 7|.
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(a) Time waveform

have slow variations andi,(¢) is positive, whereas in our
model A, (t) and ¢, (t) are parametric functions.

Note that the variations of the instantaneous frequency
f;; of the p*™* sinusoid can be calculated analytically, by
differentiating (23):

Amplitude

RO =fot o~ =lts- ap(t)? + by(t)?

0
. (25) Discrete time (samples)

(b) True (x) and estimated (o) poles
T T

o dt

0.058 - q

Thus the PACE signal model consists of both amplitude anc
frequency modulated sinusoids. Equations (24) and (25)sho £°*°/ |
that these amplitude and frequency modulations are closel'g
related. £

0.054 - q

0.052 q

0.05 4

I I I I I I
0.985 0.99 0.995 1 1.005 1.01

Fig. 2. Both amplitude and frequeficy odulation

(a) Test signal (solid line) and its envelope (dashed line)
(b) True pole £), scattered eigenvalues (0) and their mean (+)

B. Polynomial amplitude modulation

(a) Time waveform

C. Both amplitude and frequency modulation
The test signal shown in figure 2-a is that defined in
equation (21) withP = 1, f, = 8.6 x 1073, and
ao(t) = (1+ 6ot + 2627
bo(t) £ —mAft*ao(t)

Amplitude

I I I I I I I I
-250 -200 -150 -100 -50 0 50 100 150 200 250

Discrete time (samples)
oose (9) True () and estimated (0 poles _ whered, = 4 x 1073, Af = 8 x 1075, plus an additive white
noise whose variance was chosen so that the SNR is 5b dB
— 7 The corresponding complex model parametersire 2 and
Foosat 8 My = My =5 (thusr = 10), and the observation window is
ool | te[-500, 500)12.
Equations (24) and (25) yield the corresponding amplitude
il ‘ ‘ ‘ ‘ L and frequency modulations:
0.99 0.995 1 1.005 1.01
Fig. 1. Polynomial amplitude modtidfion -/ 2N 244
9 (@) Te)gt signal (sglid line) and its envelope (dashed line) Ao (t) l+m AAJ} tt ao(t)
(b) True pole £), scattered eigenvalues (0) and their mean (+) fz (t) = fo+—t
0 1+ 72 Af2¢4

In particular, the observation window of figure 2-a showshbot
The test signal shown in figure 1-a is a noisy single sindn amplitude and frequency increase.
soid with polynomial amplitude modulation and no frequency The ESPRIT method was applied with parameters=
modulation (the dotted lines represent its envelope). Mofe= 501. The five estimated eigenvalues with positive angles
precisely, this signal is that defined in equation (21) withre represented in figure 2-b, by means of 'O’ marks at the

2 .
P =1, fo =8.6x107%, ag(t) = 55555 — 1 andby(t) = 0, plus  vertices of the pentagon. The true multiple pole= ei27/o

an additive white noise whose variance was chosen so thatrepresented by ax” mark. As mentioned in section V-

the Signal Noise Ratio (SNR) is 20 dB. The corresponding, it can be noticed that the first order perturbationzgfis

complex model parameters ate = 2 and My, = M; = 3 approximately homogeneous and isotropic, so thas close

(thusr = 6), and the observation window isc [-250, 250].  to the arithmetic mean of the five estimated eigenvalues. In
The ESPRIT algorithm was applied with parameters= fact, the relative frequency deviation between the true jpoid

[ = 251. The three estimated eigenvalues with positive anglése arithmetic mean of the estimated eigenvalues48%.

are represented in figure 1-b, by means of 'O’ marks at the

vertices of the triangle. The true multiple polg = e??7/o VII. CONCLUSIONS

is represented by a+” mark. As mentioned in section V- | this paper we introduced the Polynomial Amplitude

B, it can be noticed that the first order perturbation=6f complex Exponentials (PACE) signal model as the general
is approximately homogeneous and isotropic, so thais
close to the arithmetic mean of the three estimated eigeesal !!Since the multiplicity of the poles is higher than in sectior-B/

+ i iatiQFPPOsition V.2 shows that the scattering of the eigenalseemphasized.
(represented by a mark)' The relative frequency deVIatIQﬁ)us we chose a higher SNR to obtain a similar result (a SNR addRGs

b_etween the true pole and the arithmetic mean of the estimaj@; sufficient to obtain an homogeneous and isotropic saadfer
eigenvalues i9.48%. 2Figure 2-a zooms in on the central part of the signal.
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solution to homogeneous linear recursions. This modehelste Substituting equation (6) into equation (26) yields

the well known Exponential Sinusoidal Model (ESM) to the K1

case of multiple poles, and represents the signal as a sum S(t) = Z Sk(t) (27)
of both amplitude and frequency modulated sinusoids. A =

general factorization of Hankel matrices related to thiglelo . )

was proposed, which involves Pascal-Vandermonde matricddiere the coefficients of the x | matrix S (t) are

Based on the rotational invariance property of such matyiae My -1 e
generalized ESPRIT algorithm for estimating the signabpol Sk(t)j) = D km) Pt —1+14i45] 2" 7" (28)
was proposed, involving the Jordan canonical form of the m=0

speciral matrix. . . . Then lemma A.1 yields
In presence of noise, the multiple poles are scattered into

several single eigenvalues, forming the vertices of a srgul o i o

polygon as a first order approximation. This phenomenon wa&m [t—l+1+itj] = Z Er [i 4] Eyn—e [t =11 (29)
observed in our numerical simulations, which confirmed that m'=0

the arithmetic mean of the scattered eigenvalues is a goodubstituting equations (29) and (10) into equation (28)
approximation of the original multiple pole. Therefore théhows that

PACE model leads to an alternative interpretation of a set My—1

of estimated eigenvalues belonging to the same neighbdrhoo S, (t); ;) = Z Breom () F [0 + 7] 2, I (30)
(several single eigenvalues can correspond to a single modu =0

lated sinusoid).

i , » _Applying lemma A.1 again yields
In other respects, it can be noticed that the specific ampli-

tude and frequency modulations involved in the PACE model o m’ _ _
are closely related. This might suggest that this model ts no Foli+j] = Z Erpor[i] B 5] (1)
appropriate for independent phase and envelope modutation Yot

In practice, we observed that single poles were generallyThen substituting equation (31) into equation (30) yields
sufficient for representing chirps and sinusoidal modaoieti

(like tremolo and vibrato in music signals). However, it isliv Sk(t) (i) =
known that complex polynomials can uniformly approximate ., —; ' m’

any continuous complex function in a closed and bounded > Bim(t) > Chr (2k)m) Cl]\4k(zk)(j,m/—m’/)
interval®. Thus the PACE model might be appropriate for ™=0 m'=0

coding arbitrary frequency and amplitude modulations artsh ~ which can be written as a product of matrices:
time windows. Indeed, we found some audio signag.( n

violin vibratos and guitar attacks) which could be coded enor Sk(t) = Ciiy, (2x) Hy(t) Cyy, (24)" (32)
efficiently with multiples poles than single polese( more sypstituting equation (32) into equation (27) finally ykeld
precisely or with less parameters) on very short windows fctorization (8).

ms), but most often the best results are obtained with single ]
poles only. As a conclusion, the PACE model offers intengsti .

outlooks for signal processing, but its application to audiroof of corollary 111.8. Proposition 111.6 shows that botl™

coding is not straightforward. andV' have rank-. Consequently, factorization (8) shows that
S(t) has rankr if and only if ther x r matrix D(¢) is non-
APPENDIX singular. Besides, equation (9) shows thx(t) is non-singular

if and only if H(t) is non singularvk € {0... K — 1}.
Since H(t) is upper anti-triangular with all anti-diagonal
The fO”OWing Iemma, known as thiginomial |dent|ty[18], coefficients equa' t(ﬁ(k,Mkfl)r Hk;(t) is non_singu'ar if and
[19], will be involved in the prOOf of pl‘OpOSitiOl’] 1.7 belo Only if ﬁ(k,]\lkfl) ;é 0. Moreoven equation (10) shows that

A. Factorization of the data matrix

It can be proved by induction oven [20]. vk € {0...K - 1}, ﬂ(ksz—l) = g1 20D
Lemma A.1 (Binomial identity) For all m € N, the falling follows thatD(t) is non-singular if and only ity 1z, —1) # 0
factorials satisfy the identity Vke{0...K —1}. O
Fo.[X+Y]= Z Fo [ X] Foe [Y]. B. Rotational Invariance Property of generalized Pascal ma
m’'=0 trices

The following lemma is used to show the rotational invari-
Proof of proposition I11.7. The coefficients of the matri§(f) ance property of Pascal-Vandermonde matrices in section IV
arevie {0...n—1},vj€{0...1-1}
Lemma B.1 (Rotational Invariance Property of generalized
S(t)ig) = s(t — L+ 1 47+ j). (26) Pascal matrices)Suppose that, > 2. Let Cy(z), be
the matrix extracted fromC’,(z) by deleting the last row.
13This result is known as the Weierstrass approximation theore Similarly, let C,(z); be the matrix extracted fron®";,(z)
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by deleting the first row. The€@";;(%), and C'y;(=); span the [17]

same subspace, and

Proof. The coefficients of the matri’y,(z); are defined as

(18]
Cy(2) = Chy ()1 Tar(2). (33) g

[20]

Chi(2)1i,) = Fyli +1]20FD77. Moreover, equation (5)
shows thatF;[i 4 1] = F}[i] + F(;_1)[i]. Consequently, 21]
C(2)135) 2Fjli] 2177 4 Fjali) 2707V [22]
= ZC%(Z)i(i,j) + 121 Cr]\L/I(Z)l(i,j—l) [23]
This last equation can be written in the form (33). O 24
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