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A new perturbation analysis for signal enumeratior
In rotational invariance techniques

Roland BadeauMember, IEEE Bertrand David, and Gaél Richarlember, IEEE

Abstract— The ESPRIT algorithm is a subspace-based high order selection include the Wishart matrices [13] and tlossr
resolution method used in source localization and spectral validation [14] approaches. However in the presence of a
analysis, which provides very accurate estimates of the signal oo re|ated noise, these methods tend to overestimate thelmo
parameters. However, the underlying theory assumes a known ' o .
model order, which is usually not the case in many applications. order. Consequently, SpQCIfIC methgds h"_’we been .deS|gne.d to
In particular, it is well known that under-evaluating the model ~address the colored noise case, including new information
order biases the estimation. In this paper, we analyze the pertur- theoretic criteria [15], [16], a technique based on a barideno

bation induced by an erroneous model order, and we present covariance matrix model [17], and a maximum a posteriori
an error bound for the estimated parameters. Based on this criterion [18]

theoretical framework, we propose a new method for selecting

an appropriate modeling order, which consists in minimizing ; ; ;
the error bound. This approach is applied to both synthetic In_other respects, we show in this paper how applying

and musical signals and its performance is compared to that the ESPRIT high reso'P“OU method W't_h an grroneous modgl
of existing methods, such as the Information Theoretic Criteria Order perturbs the estimation of the sinusoids. Note that in
(ITC). the literature, most papers rather focus on the pertummstio
Index Terms—ESPRIT, rotational invariance, model order induced by the additive noise. For example, the asymptotic
selection, signal enumeration, perturbation theory. second-order properties of ESPRIT were studied in the Di-
rection of Arrival (DOA) [19] and in the frequency estima-
tion [20] context, for a finite Signal to Noise Ratio (SNR).
) ] ] Reciprocally, a similar study was carried out for a finite
E STIMATING a line spectrum is an important task forymper of data samples under a large SNR hypothesis [21].
many applications, such as speech signal analysis gadi22], a class of modeling errors were analyzed. However,
synthesis [1] and musical signal modification [2]. Althoughy the best of our knowledge, no perturbation analysis of the
the Fourier transform remains a prominent tool for frequengspRIT estimates in the case of erroneous modeling order has

estimation, the ESPRIT algorithm [3] overcomes the resmiut oy er peen published (in the case of the MUSIC algorithm, a
limit of the Fourier analysis and provides straight estesaif sty is available in [23]).

the model parameters. This method relies on the rotational
invariance property of the signal subspace spanned by thdNote that all the above mentioned performance analyses
sinusoids. Its drawback is that the model order is supposeddthe ESPRIT algorithm, as well as the subspace pertur-
to be known, which is not the case in practice. bation approach in [24], rely on first order approximations.
Many methods were proposed in the literature for estGonversely, we present in this paper error bounds for the
mating the number of sinusoids in white noise. The mo#equency estimates, which are derived without approxonat
classical ones are the maximum likelihood method [4] arahd which can be easily computed. Furthermore, they are more
the Information Theoretic Criteria (ITC) [5], among whichprecise than those presented in [25]. Based on this resealt, w
the Akaike Information Criterion (AIC) [6] and the Maximumpropose a new model order selection method which consists
Description Length (MDL) by Schwartz [7] and Rissanen [8]in minimizing the perturbation. Contrary to the other metsio
Another consistent procedure in the framework of the ITC oposed in the literature, which select the model order by
the Efficient Detection Criteria (EDC) [9], which proves te b analyzing the spectral properties of the additive noise, ou
robust to non-additive white noise [10]. The various ITCGyrelapproach focuses on the signal itself. Although it reliesaon
on the similarity of the eigenvalues within the noise subgpa noiseless model, we observed that it outperforms the clalssi
and not on the existence of a gap between the signal and ndigg, even in low SNR scenarios.
subspaces [11]. A criterion for model order selection based
this gap, which looks for anaximally stabledecomposition,
has been developed in [12]. Other methods proposed for mo

I. INTRODUCTION

The paper is organized as follows. Section I summarizes
H}g principles of the ESPRIT high resolution method. In sec-
tion 111, the perturbation of the poles induced by an errareo
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Il. THE ESPRITMETHOD FOR SPECTRAL ANALYSIS Substituting equation (3) into equation (4) leads to thea-ot

The noiseless Exponential Sinusoidal Model (ESM), al§b°nal invariance property of the matr#¥’(r):
known as the Exponentially Damped Sinusoidal (EDS) Wi(r) =W (r)®(r)

model [26], defines the discrete signal as ) , ) , .
where ®(r) is defined by its eigenvalue decomposition:

" . ®(r) £ G DG . Finally, the ESPRIT algorithm [3] consists
x(t) = Zak'zk of the following steps:
=t « computingW (r),
wherer is the order of the modeky, € C — {0} are the . computing®(r) = W (r)'W(r) (where the symbot

complex amplitudes, angd, € C—{0} are the complex poles. denotes the Moore-Penrose pseudo-inverse),
Letn >, [ >r, and define the: x [ Hankel data matrix o extracting the poles; as the eigenvalues @b(r).
x(0) z(l) - z(l-1)
2(1) 2(2) - (1) I1l. I MPACT OF AN ERRONEOUS MODEL ORDER
X = : : : . In practice, the model orderis unknown. We assume below
' ' o ' that the ESPRIT algorithm is applied with an erroneous model
a(n—1) z(n) - z(n+l-2) orderp and we focus on how the estimation of the poles is
which involves N = n +1 — 1 samples of the signal. This affected. For alp € {1...n}, let W(p) £ [w(1), ..., w(p)]
matrix can be factorized in the fors = V" AV'", where and N :
V" is an x r Vandermonde matrix 2(p) = Wi (0)'W;i(p). ®)
1 1 The estimated poles are defined as the eigenvaluds(pf.
Z1 N Zr
V"= . . . ) A. Over-estimation of the model order
2?21 Z?._l If p > r, the following proposition shows that thetrue

poles belong to the whole set of eigenvaluesidi-).

. l .
A = diag(as...ay), and V' is a [ x r Vandermonde pqnosition 111.1. Suppose that < p < n and W | (p) is full
matrix [27]. If ther poles{zi, ..., 2, } are distinct, X has |k Thenvk e {1,....7}, 2 is an eigenvalue o (p).
a r-dimensional range space, spanned by the full-rank matrix

V™. This range space fully characterizes the signal poles.Atoof. Let v, be the right eigenvector o (r) associated
is thus referred to as theignal subspace to the eigenvaluez;, and consider the-dimensional vector
Let V' be the matrix extracted fronv™ by deleting the 7, 2 %k . Note that W(p)@, = W(r)v;. Con-
last row. Similarly, letVy be the matrix extracted frorv™ I _ B & B
by deleting the first row. Then the Vandermonde mati¢  S€AUenty, Wi(pjo, = Wi(rjvr = W (r) ®(r) v, =

satisfies the so-callesbtational invariance property 2 Wi(r)ve = 2 W\ (p)Joi. Since W (p) is full rank,
left multiplying the previous equality byW |(p)' vyields
?:VTD (1) @(p)vk:zkvk. O

where D = diag(z1, ..., 2). B. Under-estimation of the model order

In practice,V" is unknown, but the signal subspace can ¢ p < r, it is well known that the eigenvalues @ (p) do
be obtained by computing the singular value decompositiggt match the poles in the general case. More precisely, let
(SVD) of X' (or via subspace tracking techniques [28]-[30be an eigenvalue ab(p). In this section, it will be shown that
in an adaptive context). Indeed, {iiv(1), ..., w(n)} are the 2 approximates one of the eigenvalues®fr), and that an
left singular vectors associated to the singular valdes> error bound can be easily computed. First, we need to define

. > o, > 0 sorted in decreasing order, then the signghe upper condition numbeof the signal subspate
subspace is spanned by the r orthonormal matrixd (r) =

[w(l), ..., w(r)] (then — r last singular values being equal Ko = inf MVHA) (6)
to 0). SinceW () and V" span the same subspace, there is Acdiag(®+") omin(V] A)
a non-singular matrbG of dimensionr x r such that whereo,..(.) denotes the largest singular value of a matrix,

and omin(.) denotes the smallest one. This condition number

Vi=WwnG. (2) characterizes the noiseless signal itself, and does natndep
By deleting the last row in equation (2) we obtain on p. It is an unknown constant for our problem, which does
not need to be calculated. It is involved in the following
W (r)=VIG " (3) theorem, whose proof can be found in the appendix.

Similarly, deleting the first row in equation (2) and suhgtitg 1 [25], k2 was defined as the upper condition number oftaedermonde
equation (1) yields matrix V™, equal to‘;"‘_a"i((“,/")). The new definition ofko in equation (6)

1 yields better error bour;als, (fue to the presence of the infimum.
Wi(r)=VIDG . (4) Notation: R* denotes the set of all positive real numbers.
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Theorem 111.2 (a priori error bound). For all Z € C, there appropriate modeling order, such that the estimation error
is an eigenvaluey, of ®(r) for which bound is minimum. Ifp,.. happens to be greater than

R R thenr is the greatest value gf € {1 ... pnax} for which
‘Z - Zk:‘ < K2 Omin (WT(p) - ZWl(p)) . (7) g { }

the a posteriori error bound is zero. In any case, detecting
Note that the boune i, (W (p) — 2 W | (p)) can be com- the maxima of the inverse error functioh: p — m
puted without knowing the exact value of Corollary 1.3, in the range{l...pmax} IS @ relevant approach for selecting
which follows from theorem I11.2, has a certain similaritytv  the modeling order. Below, this function will be referred to
the well known Bauer-Fike theorem [31, pp. 365], [32, pms the ESTimation ERror (ESTER) criterion. In presence of
321]. It gives an error bound valid for all the eigenvalues afoise, we observed that a robust way of selecting the maglelin
®(p). Again, this bound can be computed without knowingrder consists in detecting the greatest valug fair which the
the exact value ofr. It involves the spectral norm of afunction J(p) reaches a local maximum which is greater than

matrix (or 2-norm), also denotefl|,, defined as|M||, £ a fraction of its global maximum (typically one tenth of the
max || M ul|y = omax(M). global maximum). Examples of the functiohare represented
lullz=1 in section V. Proposition V.1 shows that its values are i th

Corollary 111.3 (a posteriori error bourf). For each eigen- interval [1, +oo] (the proof is given in the appendix).
valuez of ®(p), there is an eigenvalue, of ®(r) for which Proposition IV.1. For all p € {1, ..., n}, | E(p)ll, < 1.

7= 2| < 52 [E@)] (8) Note that this ESTER criterion measures the rotational in-
where variance ofWW (p), since by definition the rotational invariance
E(p) = Wi(p) — W (p) ®(p). (9) property is satisfied exactly ifE(p)||, = 0. The draw-

N . R ] } back of the ESTER method is that a direct implementation
Proof. Let z be an eigenvalue @(Ap) andv a unitary eigen- \oy|d lead to a very computationally demanding algorithm.
vector associated with. Let e(p) = (W(p) —ZW (p))v. First, the singular vectorsu(p) have to be computed for all
Since v is unitary, omin (W1(p) —2W(p)) < ||E(p)\|2. p € {1...pmax}, Which requiresD (N log, (N )pmax + 1Py
In other respectse(p) = (W1(p) — W (p) (p)) v, thus gperations, by means of a variant of the orthogonal itematio
le(p)ll2 < | E(p)|l2- Consequently, EVD algorithm presented in [26]. Then the mati#iXp) must
) _ 2 < be calculated for alp € {1, ..., pmax}- Such a computation
Tmin (W1(p) =2W.(p)) < |1 E@)]2- (10) would involve 3np?> MAC for each p, so that the overall
Finally, substituting equation (10) into (7) yields eqoati(8). complexity would benp?,,, MAC%. This computational cost
L] is to be compared to that of the ITC criteria illustrated in

Remark. Letp < n — 1. We know that i) = 7, E(p) = 0 section V. In particular, the complexity of the AIC, MDL [5]

Conversely, i (p) = 0, then the matrice® | (p) and W' (p) and EDC [9] criteria is linear im.,.x. However, contrary to

span the same subspace, which means that the rotatiomﬁ E.STER method,the_se_ITC require t.he full SVD of the_data
invariance property is satisfied at order. Thusp complex matrix, whose complexity i&)(N?). Besides, the complexity

exponentials can be extracted from the observed signal, aﬂg

i 3
the corresponding complex poles can be estimated by me As® als_o have a c_o_mplexny equal dgN”). Consequentlyz
of the ESPRIT algorithm. Since the signal does not conta e relative complexities of the ESTER method and the variou

more thanr complex exponentials, we expect that r. The ITC depend Ompmax.

casep < r can happen if the signal parameters satisfy some To make the ESTER method faster, we developed a recur-

particular relationships. In practicey is always the greatest Sive impler2r1entation, presented in tab!e 1, which only iml
value ofp for which E(p) = 0. 6np + O(p*) MAC for eachp, so that its overall complexity

is 3np2,,. + O(p3..) (plus the computation of the singular
vectors). In particular, it can be noticed that computing th
matricesE(p) for all p € {1...pmax} in this way is not more
computationally demanding than computiBfp.,.x) directly.

The practical interest of corollary 1.3 is thatE(p)|, Sections IV-A and IV-B present fast methods for computing
(which will be referred to as the posteriori error boungl ®(p) and E(p) recursively.

can be computed for all € {1 ... pmax}, Wherel < ppax <
n — 1. If pnmax happens to be lower than the a posteriori
error bound gives a quantitative criterion for selecting af. Recursive computation & (p)

IV. SELECTION OF AN APPROPRIATE MODELING ORDER
BASED ON THEESTIMATION ERROR

2In comparison, the a priori error bound proposed in [25] wasatq A direct calculation of®(p) for all p € {1... pmax} from

to 7(;2‘]‘:((5;)) [Wi(p)® —2W | (p)®||,, where & was an arbitrary equation (5) would involvenp® 4+ O(p*) MAC for eachp,

. 3 1 i
unitary vector. Note that the condition number. defined in equa- and the overall complexity would b%npmax—i_o(pmax)' This

tion (6) is lower than%. Moreoveromin (W1 (p) — 2W (p)) < Section aims at computing thex p matrix @ (p) recursively, in

W+ (p)® —ZW (p) ]|, for all unitary vectors. Thus the a posteriori

error bound in equation (7) is lower than that proposed ir].[25 4In this paper, operations counts are expressed in terms ofiphgult
3This a posteriori error bound is lower than that propose®5i,[because accumulate (MAC) operations. Note thaf.x is supposed to be much lower

of the lower value of«s. thann.
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order to reduce the complexity. Equation (5) can be rewrittd3. Recursive computation &(p)

in the form Here we suppose that all th&(p) have been computed.
®(p) = Qp) ¥(p) (11) A direct calculation ofE(p) for all p € {1...pmax} from
equation (9) would involvenp? MAC for eachp, and the

where€}(p) and ¥ (p) are thep x p matrices overall complexity would bet np? ... This section aims at

2 H -1 computingE (p) recursively, in order to reduce the complexity.
2p) R (Wl(pL W) (12) Substituting equation (16) into equation (9) shows that
Y e " pEm W) e o
E(p) =8(p) — 753 Wi)vp) el
The matrix Q(p) can be easily calculated. Indeed, since T
W (p) is orthonormal, W (p) W (p) = I,. In particular, where
this equation yieldsW | (p)? W (p) = I, — v(p)v(p)¥, E(p) £ Wi(p) — W (p) ¥(p). (21)

where v(p) is the p-dimensional vector such that(p)? is

the last row of W (p). Finally, the matrix inversion lemma MAC. Then substituting equation (15) into equation (21)
[31, pp. 18-19] shows that yields a recursion for thén — 1) x p matrix E(p):
mu(p) V(p)H. (14) Ep) = [ E(p—1) —w(p)b,(p)” ‘ £(p) ] (22)
where £(p) 2 wi(p) — W (p — 1) %,(p) — w,(p) i (p).
Moreover, ¥ (p) can be recursively updated. Indeed, equarhe computation oE(p) from Z(p — 1) involves 2np MAC.
tion (13) yields Finally, the recursive computation @ (p) consists in comput-
- ing Z(p) from E(p — 1) with equation (22), then computing
T(p—1) |, (p) 15 E o . . .
(p) from E(p) with equation (20). This method requires
4np MAC at each step. Thus its overall computational cost is
where ,.(p) = Wi — D wi(p), ¥,(p) L Wip — 2np? .. MAC. As a result, it can be noticed that computing
)" w) (p) and 4y,.(p) 2 w,(p)” wi(p). It can be noticed the matrices®(p) and E(p) for all p € {1...pmax} is
that the computation off(p) from ¥(p — 1) requires only not more computationally demanding than just computing

Note that the computation aE(p) from E(p) requires2np

Q(p) = I,+

2np MAC. them for p = pmax. In both cases, the overall complexity
Finally, ®(p) can be computed fron® (p). Indeed, substi- IS 37Pax + O(Piax)- _
tuting equation (14) into equation (11) yields The complete pseudo code for computiBgp) for all p €
{1...pmax} is presented in table I. Note that the calculation
®(p) = ¥(p) + ot s v(p) e(p)? (16) of the matrices¥(p) and ®(p) is not even required.
1—|lv(p
@l TABLE |
where N RECURSIVE COMPUTATION OFE(p)
e(p) = ¥ () v(p). 17)

It can be noticed that the computation &f{p) fomwe(p) ______ -
requires onlyp? + O(p) MAC, plus the computation op(p).  Initialization

This last operation normally require$ MAC, but lemma compute w(p) for all p =1...pmax, ¢(0) =[], E(0) =[]
IV.2 suggests a recursive implementation, which involVel§ 0 For p = 1 to puax
O(p) MAC. I Update of the auxiliary matrix ¥(p) Cost
Lemma IV.2. Let u(p) be the complex number such that ¥.(p) = Wi(p— 1) wi(p) np
Yi(p) = Wilp — )" wy(p) np
-1 Yir(p) = wi(p)” wi(p) n
) = [ a8
P Update of the auxiliary matrix Z(p)
Then satisfies the recursion £(p) =wi(p) —Wi(p— )’!’ (p) w(p)Yur(p)  mp
#(p) Ep)=[ E@p-1)—-w,(p)y \ &(p) | np
@(p—1) + p(p) ¢y (p) } .
= 19 =
(p) [ H O D T up) ey | (9 | Computation of B(p) from =(p)
o(p) = solgp ) + 1(p) ¥, (p) 2
Proof. The assertion can be shown by substituting equations Lo, @) vlp =1 + ulp) Yur(p)” |
(15) an (18) into equation (17). O LE®=B0 - per Widvd)er) 2np

Finally, the recursive computation oP(p) consists in
computing ¥(p) from ¥(p — 1) with equation (15), then
computing ¢(p) from o(p — 1) with equation (19), then V. SIMULATION RESULTS
computing®(p) from ¥ (p) with equation (16). This method Section V-A illustrates the relevance of our error bounds.
requires2np+ O(p?) MAC at each step. Therefore, its overallThen the ESTER method is applied to synthetic signals
computational cost isp2,,, + O(p3...) MAC. (sections V-B, V-C) and to a musical signal (section V-D).
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(a) Periodogram of the test signal

A. Relevance of the a priori and a posteriori error bounds

In this section, the relevance of the a priori and a posterior
error bounds is illustrated. The test signal is a sum ef 20
undamped complex exponentials of the same amplitude-

Magnitude (dB)

L L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1, whose frequencies are randomly distributed-r, 1]. The ° ' ’ ‘ Frequency (Hz)

upper condition number of the signal subspace satigfigs w0 ‘ (b) Singular values

k2 < 1.05. The singular vectors forming the matric¥& (p) goor 7
have been obtained by computing the SVD of a Hankel date £ . ]
matrix of n = 512 rows and! = 512 columns, containing 5% 7
then + 1 — 1 = 1023 samples of the whole signal. For all g’zz |
p € {l...pmax = 7}, the e|genvaluee{z(p7m)}me{lmp} of 205 : Siln‘zularvalue S = 3

the matrix®(p) have been computed.

In figure 1-a, the solid line represents the eigenvalue rratig. 2. Periodogram and singular values of a synthetic $igna
; _ ; (a) periodogram of the synthetic signal in dB
obtained forp =7 <r, i.e. (b) singular values of the synthetic signal sorted in desireporder
min _|Z(7,m) — 2kl }
{’96{1”} (rm) me{1...7}

L . . . Model order selection for a synthetic signal
sorted in increasing order. The dotted line represents tﬁe y ¢

corresponding a priori error boundse. The test signal is a sum aof = 5 undamped complex
exponentials plus a complex colored noise. For eachk
{2 Omin (Wi (7) = Z2m) WD) }ea {1, ..., r}, the k™™ exponential is characterized by its am-

) o ~plitude ay, and its polez; = e?"/x, where f, € R is its
It can be noticed that the dotted line is above the solid |Irfﬂ9quency_ The values of the parameters are given in table Ii

(as expected), and more importantly that the variationsef tThe additive noise has been obtained by applying the filter
dotted line follow those of the solid line, which suggestatth

the a priori error bound is relevant. TABLE Il
PARAMETERS OF THE SYNTHETIC SIGNAL

(a) A priori error bound (p = 7)

o
©

Frequency| 0.1 Hz | 0.102 Hz| 0.4 Hz | 0.7 Hz | 0.9 Hz
Amplitude 100 100 10 50 100

o
)

Eigenvalue error
=} o
N B

H(z) = 15955 t0 a complex white gaussian noise, whose
variance has been chosen so that the resulting Signal Noise
Ratio (SNR) is 40 dB. The periodogram of the resulting test
: : : : : signal is represented in figure 2-a. It was computed from
| I ] a signal of length 255, multiplied by a Blackman window,
chosen for its high leakage rejection (-57 dB), and zero-
- VA padded to obtain 65536 points in the frequency domain. In
. particular, it can be noticed that the two complex expordsti
P : 5 s 10 12 1 16 18 2 of lowest frequency are not resolved by the periodogram.
Modet order The ESTER method is compared to several other sig-
Fig. 1. A priori and a posteriori error bounds nal enumeration techniques, among which three Information
(a) a priori error bound’s. eigenvalue error at order =7 , Theoretic Criteria (ITC), known as thAkaike Information
(b) a posteriori error bounds. maximum eigenvalue error as a functlon;ofcriterion (AIC) [5], the Minimum Description LengttMDL)
[5], and theEfficient Detection CriteriolEDC) [9] which is
In figure 1_b, the solid line represents the maximum eigehnOWn to be a robust generalization of AIC and MDL. These

o

L L
5 6 7

T L
1 2 3

4
Eigenvalue order
(b) A posteriori error bound

o I
© N
T T

\
\
\
I I

© o o ¢
»
:
!

N
T

Maximum eigenvalue error
5
T
\

o

value error obtained for all modeling ordei. methods consist in minimizing a cost function which invalve
the singular valuego, ..., o,}:
ma min |z —z
me{l.}.(.p} ke{l...r}| (p;m) k‘ 1
n n—p
as a function op. The dotted line represents the corresponding <q—lz:[+1 "3)
a posteriori error bounds.e. x2 | E(p)||, as a function ofp.  ITC(p) = —(n—p)lIn = +p(2n —p)C(1) (23)
As for the a priori error bound, it can be noticed that the 2 %%

dotted line is above the solid line (as expected), and that th

variations of the dotted line follow those of the solid liffdis ~ where C(l) is a function ofl. The AIC criterion is defined
suggests that the a posteriori error bound is a relevamtriznit by choosingC/(l) = 1 and the MDL criterion is defined by
for minimizing the bias of the estimated eigenvalues. choosingC(!) = 1 In(l). The EDC criteria are obtained for all
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. TABLE Il
functions ofl such that lim <Y =0 and lim —SW_ =

1—too ! 1500 In(In(1)) RATES OF SUCCESSFUL SIGNAL ENUMERATION FOR VARIOUSY
+oo. We choseC(l) = /I1In(In(l)), for which we obtained N 125 | 250 | 500
the best results. The singular values have been obtained by '@ﬁ fszj 621"@ 700%5
R . .. () (0 (]
computing the SVD of a Hankgl dat_a matrix containimg= EDC 38% | 58 % | 77 %
128 rows and! = 128 columns, involving the:+1 —1 = 255 gap criterion| 47 % | 63 % | 76 %
samples of the whole signal. Figure 2-b displays the highest C2 359% | 44.% | 44 %
ESTER | 48% | 63% | 76 %

Pmax = 25 singular values. Note that the singular values do
not present a significant decrease beypnd 5.

TABLE IV
«10° (a) Information theoretic criteria for white noise RATES OF SUCCESSFUL SIGNAL ENUMERATION FOR VARIOUSNR

? | | | | SNR [ 10dB [ 20dB | 30 dB
AIC 3% 2% 2%

r 1 MDL 45% | 61% | 65%
e EDC 18% | 58% | 77 %

0 ‘ ‘ ‘ ‘ gap criterion| 28 % | 63% | 75 %
5 10 .15 20 25 0 o 0

(b) Gap criterion C2 13% | 44 % | 61 %

ESTER 36% | 63% | 76 %

1 l N4 N4 N4
05 h

e . = " 25 is reached ap = r» = 5, despite the surrounding noise, which

10" (c) Information theoretic criteria for colored noise was not included in the model.
(€]
2f ‘ ©000000000000000 0000004 C. Statistical performance comparison
A —— — ] Below, the ESTER method and the above-mentioned sig-
0 5 m s 2 % nal enumeration techniques are applied to various syetheti
X (d) ESTER criterion signals. These signals consist of a sum of real-valued and
o | undamped sinusoids, plus a colored noise. The number of
sinusoids is uniformly distributed between 1 and 10, sottiat
o 0 i model orderr belongs to{2...20}. Their amplitudes, phases
. P & & o 2 and frequencies are randomly distributed in the intervals
Model order [1,10], ] — 7, 7] and|—1, ]. The additive noise is obtained
Fig. 3. Model order selection for the synthetic signal by fllteng? a white gau§3|a_n noise by the high-pass filter
(a) AIC, MDL, and EDC criteria 1—0.52z"" (whose rejection is lower than 10 dB).
(b) Gap criterion As proposed in section IV, the robustness of the ESTER

(c) C1, Ca, Cip1, andCyy2 criteria

(d) ESTER criterion method is improved here by detecting the greatest valye of

for which the ESTER criterioty (p) reaches a local maximum
which is greater than one tenth of the global maximum. Ta-

Figure 3-a displays the values of the AIC (solid line)ples Il and IV show the rates of successful signal enumenati
MDL (dashed line) and EDC (dotted line) criteria, such agveraged over 10000 independent runs, for various values of
formulated in the above equation, fpre {1...pumax}. None the window lengthV and the SNR (other analysis parameters
of them reaches a minimum at= r = 5. This failure might aren = [N/2] and ppa = 22). In table I, the SNR is
be explained by the presence of the surrounding noise, whéise@d to 20 dB, and the experiment is run fof = 125,
power spectral density is not uniform, contrary to the adelit ' = 250 and N = 500. In table IV, N is fixed to 250, and the
white noise hypothesis on which these estimators basicadlyperiment is run for a low SNR (10 dB), a moderate SNR (20
rely. As expected, the EDC criterion is more robust than AIgB) and a high SNR (30 dB). The obtained percentages have
and MDL, but its minimum is obtained fqr = 8. Figure 3-b peen rounded towards the nearest integer, since the number
represents the criterion proposed in [12] for detectingghe of independent runs (10000) guarantees that the confidence
in the singular values decrease. It can be noticed that tiigerval lies betweent1% around the estimated rate, for a
criterion selects the right valug = r = 5, but the value 95% confidence level.
p = 3 is almost as much emphasized. Figure 3-c displays|t can be noticed that the AIC is ineffective for processing
new ITC criteria proposed in [16] to address the coloredeoishese synthetic data. Besides, the successful rate ofhe
casé. The best results were obtained with, which reaches criterion [16] is always lower than that of all the other
a minimum atp = 6 ~ r. methods. The MDL criterion seems to be more robust than

Finally, figure 3-d displays the ESTER criteriof(p) for ESTER to low SNRs. However, ESTER outperforms MDL
p € {1, ..., pmax}. It can be noticed that the global maximumyoth for high values ofV and high SNRs. Compared to the

5These new criteria are referred to@s (solid line),Co (dashed line)(,1 EDC criterion, ESTER presents similar performance for high

(dotted line) andC,2 (circles line). The common value of the parametersN and high SNR_S’ but it is more robust to_ I(_)W values/of
M; and M, defined in [16] was set t&; — 1. and low SNRs. Finally, ESTER behaves similarly to the gap
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criterion [12] for all values ofV. However, it is more robust to maximum is reached ap = 16. It can also be noticed
low SNRs. It can be noticed that although the ESTER methdtisat the error bounds obtained for lower values pofare
relies on a noise-free signal model, its performance doés melevant. Indeed, high values are reached at 4, 6, 12,

collapse at low SNRs.

D. Model order selection for a musical signal

(a) Periodogram of the piano signal
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which in fact correspond to small jumps in the decrease of
the singular values (represented in figure 4-b). Theretie,
ESTER method gives the expected model order, and moreover
the error bounds can be used to quantify the adequacy of a
possible lower modeling order. In particular, it can be cedi

that odd model orders do not fit the signal. Indeed, since this
signal is real-valued and centered, its spectrum is heamiti
symmetric with no constant component, which underlies an
even model order.

«10° (a) Information theoretic criteria for white noise
T T

15

1 N4 @ @ P P P P
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Fig. 4. Periodogram and singular values of a piano signal
(a) periodogram of the piano signal in dB
(b) singular values of the piano signal sorted in decreasidgr

This section illustrates the application of the ESTER métho
to a musical signal. The study deals with a piano tone, C5,
sampled at 11025 Hz, from which a segmentd5 samples
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(c) Information theoretic criteria for colored noise

I
30

35 40

00

%o
\\\?ooooooOOo

I
10 15 20 25

(d) ESTER criterion
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(23 ms) has been extracted. Note that audio signals ofter, ‘

require some pre-processing before applying the ESPRIT al 40l
gorithm. For example, signals with a high number of sinusoid 0| .
(typically low-pitched sounds) may first be decomposed into 200 ? o . .
several sub-band signals (via filtering/decimating, appsed ¢ & Grotopoto0n o < @
in [33]). In this example, this pre-processing is not uséu;es Model order

the chosen piano tone has few sinusoidal components. In otpie 5. Model order selection for the piano sianal
respects, it is well known that the energy of audio signals is (a) AIC, MDL, and EpDC critgria
not evenly distributed over frequencies. Therefore we wsed (b) Gap criterion o
pre-emphasis filter obtained by linear prediction at ordén 7 ﬁg)) ggTEQR g’i;‘elr'ij‘r?dc’”z criteria
compensate the energy decrease.

The periodogram of the filtered piano signal is displayed
in figure 4-a. In this figure, sixteen sharp spectral peaks
clearly rise above the surrounding noise level. Phg, = 40
highest singular values of the data méiriare represented

in figure 4-b. Clearly, these singular values collapse bdyo . . .
» = 16, which suggests a modeling order equallt %SM model is affected by applying the ESPRIT algorithm

Figure 5-a displays the AIC (solid line), MDL (dashed Iineﬁ"th an erroneous model order. If the model order is over-

and EDC (dotted line) criteria. Only EDC reaches a minimumsnmated' the true poles are among those estimated. On the

at p — 16. However this minimum is not substantially IOWercontrary, if the order is underestimated, the estimatedspohn

than the neighboring values. Figure 5-b represents the he seen as approximations of some of the true ones. In this

a - : :

criterion proposed in [12]. Contrary to the above—mentii)n(qa""gt case, aa posteriori error boundwas given, which can b?

ITC, this criterion here selects the right valye = 16 computed without knowing the exact model order. Following
' - . from this observation, we introduced the ESTER criterion fo

Figure 5-c displays the I.TC cn_terla proposed in [16], Wltr;s1electing an appropriate model order. Since the initiahoet
the same parameters as in section V-B. None of them reache€s

a minimum atp — 16. Finally, figure 5-d displays the was computationally expensive, we proposed a fast algorith

o for recursively computing the a posteriori error boundsefh
ESTER f I 1, ... ax +. The global o '
S criterion/(p) for all p € {1, > Pmax} e globa we showed the relevance of our criterion as an error bound,

5The singular values have been obtained by computing the S\#lHainkel and We_ iIIu_strated the perforr_nance_ of the ESTER criterion on
data matrix containing = 128 rows and = 128 columns, as in section V-B. Synthetic signals and on a piano signal. In addition, we dhote

VI. CONCLUSIONS
In this paper, we described how the estimation of a noiseless
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that the error bounds could be used to quantify the adequatpof of proposition IV.1.It can be noticed that

of a possible lower modeling order. Finally, although it was
designed for the ESPRIT algorithm, the ESTER criterion can

E(p) = (Wi(p) Wi(p)! = W (p) W, (p)") W+ (p).

be used with any High Resolution method. It can also bgpplying the 2-norm yields

adapted to estimate the order of the more gerneohinomial
Amplitude Complex ExponentialPACE) model [34].

IE()l, < dist (Wi(p), W (p) W1, (31)

In presence of noise, we mentioned in section IV thgfnere

a robust way of selecting the modeling order consists in

detecting the greatest valuesofor which the ESTER criterion dist (W1 (p), W (p)) £ [W1(p) W1(p)" — W () W (p) |,

J(p) reaches a local maximum greater than a fraction of ifS w.o yistance between the subspasean (W ;
global maximum. Future work will be dedicated to an analys'§pan(Wi(p)) which satisfieslist (W 1 (p) Wl(pg)

of the effect of noise, in order to better exploit the infotioa
provided by the ESTER criterion.

APPENDIX

Proof of theorem II1.2.If Z = z;, for somek € {1...r}, the
assertion is trivial, so we may assume thdt € {1...7},
Z # z. Letv be a given unitary vector, and define the residua[I2

(1]

e(p) = (Wi(p) —ZW (p))o. (24)
SinceW (p)v = W (r) [ g } equation (24) yields e
elr) = Wi -zwye) | o] @ ®

Substituting equations (3) and (4) into equation (25) ygeld [5]

e(p) =V (D-2I,)G { o } . (26) g
SinceVk € {1...r}, Z # z,, D — ZI, is non-singular.
Therefore, equation (26) yields 7]
v N
[ v } —G(D-21,)" Ve @7 @
(9]
Consider a given diagonal matrix whose diagonal coeffi-
cients are positive. Then equation (27) is equivalent to 0]
v Syl A-1ym
[ o } =GA(D-Z2I,) " A ViTe(p). (28) -
Applying the 2-norm into equation (28) yields
. o — C1xrn [12]
[ol, < IGAll, (D —20)7" | [|a= V|| e, -
(29)
Since W (r) is orthonormal andV"A = W(r)GA, 3]
IGA|l, = |I[V'Al, = omax(V"A). Moreover,
(D -21,)"" is diagonal with diagonal entries, thus (141
H(D—?IT)_lH2 = m Since V| is full-rank,
ke{l...r}

the singular values 01\*1V7fT are the inverses of those of(t°]
V7 A, so that|| A7V = m Finally, sinced is

unitary, equation (29) yiefds
O'max(Vn A)
omin (V] A)

(16]

(30)

JE < le@)ll -

(17]
Note that equation (30) is satisfied for all unitary vector

and all matrixA € diag(R%"). Consequently, equation (7)€l

follows from equation (30). O

p)) and
<1, as

shown in [32, pp. 76-77]. SincgW(p)||, < [|[W ()|, = 1,
the result follows from equation (31).

O
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