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A new perturbation analysis for signal enumeration
in rotational invariance techniques

Roland Badeau,Member, IEEE,Bertrand David, and Gaël Richard,Member, IEEE

Abstract— The ESPRIT algorithm is a subspace-based high
resolution method used in source localization and spectral
analysis, which provides very accurate estimates of the signal
parameters. However, the underlying theory assumes a known
model order, which is usually not the case in many applications.
In particular, it is well known that under-evaluating the model
order biases the estimation. In this paper, we analyze the pertur-
bation induced by an erroneous model order, and we present
an error bound for the estimated parameters. Based on this
theoretical framework, we propose a new method for selecting
an appropriate modeling order, which consists in minimizing
the error bound. This approach is applied to both synthetic
and musical signals and its performance is compared to that
of existing methods, such as the Information Theoretic Criteria
(ITC).

Index Terms— ESPRIT, rotational invariance, model order
selection, signal enumeration, perturbation theory.

I. I NTRODUCTION

ESTIMATING a line spectrum is an important task for
many applications, such as speech signal analysis and

synthesis [1] and musical signal modification [2]. Although
the Fourier transform remains a prominent tool for frequency
estimation, the ESPRIT algorithm [3] overcomes the resolution
limit of the Fourier analysis and provides straight estimates of
the model parameters. This method relies on the rotational
invariance property of the signal subspace spanned by the
sinusoids. Its drawback is that the model order is supposed
to be known, which is not the case in practice.

Many methods were proposed in the literature for esti-
mating the number of sinusoids in white noise. The most
classical ones are the maximum likelihood method [4] and
the Information Theoretic Criteria (ITC) [5], among which
the Akaike Information Criterion (AIC) [6] and the Maximum
Description Length (MDL) by Schwartz [7] and Rissanen [8].
Another consistent procedure in the framework of the ITC is
the Efficient Detection Criteria (EDC) [9], which proves to be
robust to non-additive white noise [10]. The various ITC rely
on the similarity of the eigenvalues within the noise subspace,
and not on the existence of a gap between the signal and noise
subspaces [11]. A criterion for model order selection basedon
this gap, which looks for amaximally stabledecomposition,
has been developed in [12]. Other methods proposed for model
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order selection include the Wishart matrices [13] and the cross-
validation [14] approaches. However in the presence of a
correlated noise, these methods tend to overestimate the model
order. Consequently, specific methods have been designed to
address the colored noise case, including new information
theoretic criteria [15], [16], a technique based on a band noise
covariance matrix model [17], and a maximum a posteriori
criterion [18].

In other respects, we show in this paper how applying
the ESPRIT high resolution method with an erroneous model
order perturbs the estimation of the sinusoids. Note that in
the literature, most papers rather focus on the perturbations
induced by the additive noise. For example, the asymptotic
second-order properties of ESPRIT were studied in the Di-
rection of Arrival (DOA) [19] and in the frequency estima-
tion [20] context, for a finite Signal to Noise Ratio (SNR).
Reciprocally, a similar study was carried out for a finite
number of data samples under a large SNR hypothesis [21].
In [22], a class of modeling errors were analyzed. However,
to the best of our knowledge, no perturbation analysis of the
ESPRIT estimates in the case of erroneous modeling order has
ever been published (in the case of the MUSIC algorithm, a
study is available in [23]).

Note that all the above mentioned performance analyses
of the ESPRIT algorithm, as well as the subspace pertur-
bation approach in [24], rely on first order approximations.
Conversely, we present in this paper error bounds for the
frequency estimates, which are derived without approximation
and which can be easily computed. Furthermore, they are more
precise than those presented in [25]. Based on this result, we
propose a new model order selection method which consists
in minimizing the perturbation. Contrary to the other methods
proposed in the literature, which select the model order by
analyzing the spectral properties of the additive noise, our
approach focuses on the signal itself. Although it relies ona
noiseless model, we observed that it outperforms the classical
ITC, even in low SNR scenarios.

The paper is organized as follows. Section II summarizes
the principles of the ESPRIT high resolution method. In sec-
tion III, the perturbation of the poles induced by an erroneous
model order is analyzed. Then our new model order selection
method, referred to as the ESTER method, is introduced
in section IV, where a fast implementation is proposed. In
section V, the relevance of our criterion as an error bound
is examined, and the performance of the ESTER method is
compared to that of some existing methods. Finally, the main
conclusions of this paper are summarized in section VI.
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II. T HE ESPRITMETHOD FOR SPECTRAL ANALYSIS

The noiseless Exponential Sinusoidal Model (ESM), also
known as the Exponentially Damped Sinusoidal (EDS)
model [26], defines the discrete signal as

x(t) =

r∑

k=1

αkz
t
k

where r is the order of the model,αk ∈ C − {0} are the
complex amplitudes, andzk ∈ C−{0} are the complex poles.

Let n > r, l > r, and define then× l Hankel data matrix

X =





x(0) x(1) · · · x(l − 1)
x(1) x(2) · · · x(l)

...
... · · ·

...
x(n− 1) x(n) · · · x(n+ l − 2)




.

which involvesN = n + l − 1 samples of the signal. This
matrix can be factorized in the formX = V nAV lT , where
V n is a n× r Vandermonde matrix

V n =





1 . . . 1
z1 . . . zr

...
...

...
zn−1
1 . . . zn−1

r




,

A = diag(α1 . . . αr), and V l is a l × r Vandermonde
matrix [27]. If the r poles{z1, . . . , zr} are distinct,X has
a r-dimensional range space, spanned by the full-rank matrix
V n. This range space fully characterizes the signal poles. It
is thus referred to as thesignal subspace.

Let V n
↓ be the matrix extracted fromV n by deleting the

last row. Similarly, letV n
↑ be the matrix extracted fromV n

by deleting the first row. Then the Vandermonde matrixV n

satisfies the so-calledrotational invariance property:

V n
↑ = V n

↓ D (1)

whereD = diag(z1, . . . , zr).
In practice,V n is unknown, but the signal subspace can

be obtained by computing the singular value decomposition
(SVD) of X (or via subspace tracking techniques [28]–[30]
in an adaptive context). Indeed, if{w(1), . . . , w(n)} are the
left singular vectors associated to the singular valuesσ1 ≥
. . . ≥ σn ≥ 0 sorted in decreasing order, then the signal
subspace is spanned by then×r orthonormal matrixW (r) =
[w(1), . . . , w(r)] (the n− r last singular values being equal
to 0). SinceW (r) andV n span the same subspace, there is
a non-singular matrixG of dimensionr × r such that

V n = W (r)G. (2)

By deleting the last row in equation (2) we obtain

W ↓(r) = V n
↓ G

−1. (3)

Similarly, deleting the first row in equation (2) and substituting
equation (1) yields

W ↑(r) = V n
↓ DG−1. (4)

Substituting equation (3) into equation (4) leads to the rota-
tional invariance property of the matrixW (r):

W ↑(r) = W ↓(r)Φ(r)

where Φ(r) is defined by its eigenvalue decomposition:
Φ(r) , GDG−1. Finally, the ESPRIT algorithm [3] consists
of the following steps:

• computingW (r),
• computingΦ(r) = W ↓(r)

†W ↑(r) (where the symbol†
denotes the Moore-Penrose pseudo-inverse),

• extracting the poleszk as the eigenvalues ofΦ(r).

III. I MPACT OF AN ERRONEOUS MODEL ORDER

In practice, the model orderr is unknown. We assume below
that the ESPRIT algorithm is applied with an erroneous model
order p and we focus on how the estimation of the poles is
affected. For allp ∈ {1 . . . n}, letW (p) , [w(1), . . . , w(p)]
and

Φ(p) , W ↓(p)
†W ↑(p). (5)

The estimated poles are defined as the eigenvalues ofΦ(p).

A. Over-estimation of the model order

If p ≥ r, the following proposition shows that ther true
poles belong to the whole set of eigenvalues ofΦ(r).

Proposition III.1. Suppose thatr ≤ p < n andW ↓(p) is full
rank. Then∀k ∈ {1, . . . , r}, zk is an eigenvalue ofΦ(p).

Proof. Let vk be the right eigenvector ofΦ(r) associated
to the eigenvaluezk and consider thep-dimensional vector

vk ,

[
vk

0

]
. Note that W (p)vk = W (r)vk. Con-

sequently,W ↑(p)vk = W ↑(r)vk = W ↓(r)Φ(r)vk =
zkW ↓(r)vk = zkW ↓(p)vk. Since W ↓(p) is full rank,
left multiplying the previous equality byW ↓(p)

† yields
Φ(p)vk = zk vk.

B. Under-estimation of the model order

If p < r, it is well known that the eigenvalues ofΦ(p) do
not match the poles in the general case. More precisely, letẑ
be an eigenvalue ofΦ(p). In this section, it will be shown that
ẑ approximates one of the eigenvalues ofΦ(r), and that an
error bound can be easily computed. First, we need to define
the upper condition numberof the signal subspace1:

κ2 = inf
Λ∈diag(R+r)

σmax(V
n
Λ)

σmin(V n
↓ Λ)

(6)

whereσmax(.) denotes the largest singular value of a matrix,
andσmin(.) denotes the smallest one. This condition number
characterizes the noiseless signal itself, and does not depend
on p. It is an unknown constant for our problem, which does
not need to be calculated. It is involved in the following
theorem, whose proof can be found in the appendix.

1In [25], κ2 was defined as the upper condition number of theVandermonde
matrix V

n, equal to σmax(V n)
σmin(V n

↓
)

. The new definition ofκ2 in equation (6)

yields better error bounds, due to the presence of the infimum.
Notation:R+ denotes the set of all positive real numbers.
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Theorem III.2 (a priori error bound2). For all ẑ ∈ C, there
is an eigenvaluezk of Φ(r) for which

|ẑ − zk| ≤ κ2 σmin (W ↑(p) − ẑW ↓(p)) . (7)

Note that the boundσmin (W ↑(p) − ẑW ↓(p)) can be com-
puted without knowing the exact value ofr. Corollary III.3,
which follows from theorem III.2, has a certain similarity with
the well known Bauer-Fike theorem [31, pp. 365], [32, pp.
321]. It gives an error bound valid for all the eigenvalues of
Φ(p). Again, this bound can be computed without knowing
the exact value ofr. It involves the spectral norm of a
matrix (or 2-norm), also denoted‖.‖2, defined as‖M‖2 ,

max
‖u‖

2
=1

‖M u‖2 = σmax(M).

Corollary III.3 (a posteriori error bound3). For each eigen-
value ẑ of Φ(p), there is an eigenvaluezk of Φ(r) for which

|ẑ − zk| ≤ κ2 ‖E(p)‖2 (8)

where
E(p) = W ↑(p) −W ↓(p)Φ(p). (9)

Proof. Let ẑ be an eigenvalue ofΦ(p) and v̂ a unitary eigen-
vector associated witĥz. Let e(p) , (W ↑(p) − ẑW ↓(p)) v̂.
Since v̂ is unitary, σmin (W ↑(p) − ẑW ↓(p)) ≤ ‖e(p)‖2.
In other respects,e(p) = (W ↑(p) −W ↓(p)Φ(p)) v̂, thus
‖e(p)‖2 ≤ ‖E(p)‖2. Consequently,

σmin (W ↑(p) − ẑW ↓(p)) ≤ ‖E(p)‖2. (10)

Finally, substituting equation (10) into (7) yields equation (8).

Remark. Let p < n − 1. We know that ifp = r, E(p) = 0.
Conversely, ifE(p) = 0, then the matricesW ↓(p) andW ↑(p)
span the same subspace, which means that the rotational
invariance property is satisfied at orderp. Thus p complex
exponentials can be extracted from the observed signal, and
the corresponding complex poles can be estimated by means
of the ESPRIT algorithm. Since the signal does not contain
more thanr complex exponentials, we expect thatp ≤ r. The
casep < r can happen if the signal parameters satisfy some
particular relationships. In practice,r is always the greatest
value ofp for whichE(p) = 0.

IV. SELECTION OF AN APPROPRIATE MODELING ORDER

BASED ON THEESTIMATION ERROR

The practical interest of corollary III.3 is that‖E(p)‖2

(which will be referred to as thea posteriori error bound)
can be computed for allp ∈ {1 . . . pmax}, where1 ≤ pmax <
n − 1. If pmax happens to be lower thanr, the a posteriori
error bound gives a quantitative criterion for selecting an

2In comparison, the a priori error bound proposed in [25] was equal
to σmax(V n)

σmin(V n
↓
)



W↑(p) bv − bz W↓(p) bv


2
, where bv was an arbitrary

unitary vector. Note that the condition numberκ2 defined in equa-
tion (6) is lower thanσmax(V n)

σmin(V n
↓
)

. Moreoverσmin

�
W↑(p) − bz W↓(p)

�
≤

W↑(p) bv − bz W↓(p) bv



2
for all unitary vectorbv. Thus the a posteriori

error bound in equation (7) is lower than that proposed in [25].
3This a posteriori error bound is lower than that proposed in [25], because

of the lower value ofκ2.

appropriate modeling order, such that the estimation error
bound is minimum. Ifpmax happens to be greater thanr,
then r is the greatest value ofp ∈ {1 . . . pmax} for which
the a posteriori error bound is zero. In any case, detecting
the maxima of the inverse error functionJ : p 7→ 1

‖E(p)‖
2
2

in the range{1 . . . pmax} is a relevant approach for selecting
the modeling order. Below, this function will be referred to
as the ESTimation ERror (ESTER) criterion. In presence of
noise, we observed that a robust way of selecting the modeling
order consists in detecting the greatest value ofp for which the
functionJ(p) reaches a local maximum which is greater than
a fraction of its global maximum (typically one tenth of the
global maximum). Examples of the functionJ are represented
in section V. Proposition IV.1 shows that its values are in the
interval [1, +∞[ (the proof is given in the appendix).

Proposition IV.1. For all p ∈ {1, . . . , n}, ‖E(p)‖2 ≤ 1.

Note that this ESTER criterion measures the rotational in-
variance ofW (p), since by definition the rotational invariance
property is satisfied exactly if‖E(p)‖2 = 0. The draw-
back of the ESTER method is that a direct implementation
would lead to a very computationally demanding algorithm.
First, the singular vectorsw(p) have to be computed for all
p ∈ {1 . . . pmax}, which requiresO(N log2(N)pmax+np2

max)
operations, by means of a variant of the orthogonal iteration
EVD algorithm presented in [26]. Then the matrixE(p) must
be calculated for allp ∈ {1, . . . , pmax}. Such a computation
would involve 3np2 MAC for each p, so that the overall
complexity would benp3

max MAC4. This computational cost
is to be compared to that of the ITC criteria illustrated in
section V. In particular, the complexity of the AIC, MDL [5]
and EDC [9] criteria is linear inpmax. However, contrary to
the ESTER method, these ITC require the full SVD of the data
matrix, whose complexity isO(N3). Besides, the complexity
of the criteria proposed in [16] for addressing the colored noise
case also have a complexity equal toO(N3). Consequently,
the relative complexities of the ESTER method and the various
ITC depend onpmax.

To make the ESTER method faster, we developed a recur-
sive implementation, presented in table I, which only involves
6np + O(p2) MAC for eachp, so that its overall complexity
is 3np2

max + O(p3
max) (plus the computation of the singular

vectors). In particular, it can be noticed that computing the
matricesE(p) for all p ∈ {1 . . . pmax} in this way is not more
computationally demanding than computingE(pmax) directly.
Sections IV-A and IV-B present fast methods for computing
Φ(p) andE(p) recursively.

A. Recursive computation ofΦ(p)

A direct calculation ofΦ(p) for all p ∈ {1 . . . pmax} from
equation (5) would involve2np2 + O(p3) MAC for eachp,
and the overall complexity would be23 np

3
max+O(p4

max). This
section aims at computing thep×p matrixΦ(p) recursively, in

4In this paper, operations counts are expressed in terms of multiply /
accumulate (MAC) operations. Note thatpmax is supposed to be much lower
thann.
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order to reduce the complexity. Equation (5) can be rewritten
in the form

Φ(p) = Ω(p)Ψ(p) (11)

whereΩ(p) andΨ(p) are thep× p matrices

Ω(p) ,
(
W ↓(p)

H W ↓(p)
)−1

(12)

Ψ(p) , W ↓(p)
H W ↑(p). (13)

The matrix Ω(p) can be easily calculated. Indeed, since
W (p) is orthonormal,W (p)H W (p) = Ip. In particular,
this equation yieldsW ↓(p)

H W ↓(p) = Ip − ν(p)ν(p)H ,
whereν(p) is the p-dimensional vector such thatν(p)H is
the last row ofW (p). Finally, the matrix inversion lemma
[31, pp. 18-19] shows that

Ω(p) = Ip +
1

1 − ‖ν(p)‖2
ν(p)ν(p)H . (14)

Moreover,Ψ(p) can be recursively updated. Indeed, equa-
tion (13) yields

Ψ(p) =

[
Ψ(p− 1) ψr(p)
ψl(p)

H ψlr(p)

]
(15)

where ψr(p) , W ↓(p − 1)H w↑(p), ψl(p) , W ↑(p −
1)H w↓(p) and ψlr(p) , w↓(p)

H w↑(p). It can be noticed
that the computation ofΨ(p) from Ψ(p − 1) requires only
2np MAC.

Finally, Φ(p) can be computed fromΨ(p). Indeed, substi-
tuting equation (14) into equation (11) yields

Φ(p) = Ψ(p) +
1

1 − ‖ν(p)‖2
ν(p)ϕ(p)H (16)

where
ϕ(p) , Ψ(p)Hν(p). (17)

It can be noticed that the computation ofΦ(p) from Ψ(p)
requires onlyp2 +O(p) MAC, plus the computation ofϕ(p).
This last operation normally requiresp2 MAC, but lemma
IV.2 suggests a recursive implementation, which involves only
O(p) MAC.

Lemma IV.2. Let µ(p) be the complex number such that

ν(p) =

[
ν(p− 1)
µ(p)

]
(18)

Thenϕ(p) satisfies the recursion

ϕ(p) =

[
ϕ(p− 1) + µ(p)ψl(p)

ψr(p)
Hν(p− 1) + µ(p)ψlr(p)

∗

]
(19)

Proof. The assertion can be shown by substituting equations
(15) an (18) into equation (17).

Finally, the recursive computation ofΦ(p) consists in
computing Ψ(p) from Ψ(p − 1) with equation (15), then
computing ϕ(p) from ϕ(p − 1) with equation (19), then
computingΦ(p) from Ψ(p) with equation (16). This method
requires2np+O(p2) MAC at each step. Therefore, its overall
computational cost isnp2

max +O(p3
max) MAC.

B. Recursive computation ofE(p)

Here we suppose that all theΦ(p) have been computed.
A direct calculation ofE(p) for all p ∈ {1 . . . pmax} from
equation (9) would involvenp2 MAC for each p, and the
overall complexity would be1

3 np
3
max. This section aims at

computingE(p) recursively, in order to reduce the complexity.
Substituting equation (16) into equation (9) shows that

E(p) = Ξ(p) −
1

1 − ‖ν(p)‖2
(W ↓(p)ν(p))ϕ(p)H (20)

where
Ξ(p) , W ↑(p) −W ↓(p)Ψ(p). (21)

Note that the computation ofE(p) from Ξ(p) requires2np
MAC. Then substituting equation (15) into equation (21)
yields a recursion for the(n− 1) × p matrix Ξ(p):

Ξ(p) =
[

Ξ(p− 1) −w↓(p)ψl(p)
H ξ(p)

]
(22)

where ξ(p) , w↑(p) − W ↓(p − 1)ψr(p) − w↓(p)ψlr(p).
The computation ofΞ(p) from Ξ(p− 1) involves2np MAC.
Finally, the recursive computation ofE(p) consists in comput-
ing Ξ(p) from Ξ(p − 1) with equation (22), then computing
E(p) from Ξ(p) with equation (20). This method requires
4np MAC at each step. Thus its overall computational cost is
2np2

max MAC. As a result, it can be noticed that computing
the matricesΦ(p) and E(p) for all p ∈ {1 . . . pmax} is
not more computationally demanding than just computing
them for p = pmax. In both cases, the overall complexity
is 3np2

max +O(p3
max).

The complete pseudo code for computingE(p) for all p ∈
{1 . . . pmax} is presented in table I. Note that the calculation
of the matricesΨ(p) andΦ(p) is not even required.

TABLE I

RECURSIVE COMPUTATION OFE(p)

Initialization
compute w(p) for all p = 1 . . . pmax, ϕ(0) = [], Ξ(0) = []

For p = 1 to pmax266666666666666666664
Update of the auxiliary matrix Ψ(p) Cost
ψr(p) = W ↓(p− 1)H w↑(p) np

ψl(p) = W ↑(p− 1)H w↓(p) np

ψlr(p) = w↓(p)
H w↑(p) n

Update of the auxiliary matrix Ξ(p)
ξ(p) = w↑(p)−W ↓(p− 1)ψr(p)−w↓(p)ψlr(p) np

Ξ(p) =
�

Ξ(p− 1)−w↓(p)ψl(p)
H ξ(p)

�
np

Computation of E(p) from Ξ(p)

ϕ(p) =

�
ϕ(p− 1) + µ(p)ψl(p)

ψr(p)
Hν(p− 1) + µ(p)ψlr(p)

∗

�
2p

E(p) = Ξ(p)− 1
1−‖ν(p)‖2 (W ↓(p)ν(p))ϕ(p)H 2np

V. SIMULATION RESULTS

Section V-A illustrates the relevance of our error bounds.
Then the ESTER method is applied to synthetic signals
(sections V-B, V-C) and to a musical signal (section V-D).
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A. Relevance of the a priori and a posteriori error bounds

In this section, the relevance of the a priori and a posteriori
error bounds is illustrated. The test signal is a sum ofr = 20
undamped complex exponentials of the same amplitudeαk =
1, whose frequencies are randomly distributed in[− 1

2 ,
1
2 ]. The

upper condition number of the signal subspace satisfies1 ≤
κ2 ≤ 1.05. The singular vectors forming the matricesW (p)
have been obtained by computing the SVD of a Hankel data
matrix of n = 512 rows andl = 512 columns, containing
the n + l − 1 = 1023 samples of the whole signal. For all
p ∈ {1 . . . pmax = r}, the eigenvalues

{
ẑ(p,m)

}
m∈{1...p}

of
the matrixΦ(p) have been computed.

In figure 1-a, the solid line represents the eigenvalue errors
obtained forp = 7 < r, i.e.

{
min

k∈{1...r}
|ẑ(7,m) − zk|

}

m∈{1...7}

sorted in increasing order. The dotted line represents the
corresponding a priori error bounds,i.e.

{
κ2 σmin

(
W ↑(7) − ẑ(7,m)W ↓(7)

)}
m∈{1...7}

It can be noticed that the dotted line is above the solid line
(as expected), and more importantly that the variations of the
dotted line follow those of the solid line, which suggests that
the a priori error bound is relevant.
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(a) A priori error bound (p = 7)
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Fig. 1. A priori and a posteriori error bounds
(a) a priori error boundvs. eigenvalue error at orderp = 7
(b) a posteriori error boundvs. maximum eigenvalue error as a function ofp

In figure 1-b, the solid line represents the maximum eigen-
value error obtained for all modeling orders,i.e.

max
m∈{1...p}

min
k∈{1...r}

|ẑ(p,m) − zk|

as a function ofp. The dotted line represents the corresponding
a posteriori error bounds,i.e. κ2 ‖E(p)‖2 as a function ofp.
As for the a priori error bound, it can be noticed that the
dotted line is above the solid line (as expected), and that the
variations of the dotted line follow those of the solid line.This
suggests that the a posteriori error bound is a relevant criterion
for minimizing the bias of the estimated eigenvalues.
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Fig. 2. Periodogram and singular values of a synthetic signal
(a) periodogram of the synthetic signal in dB
(b) singular values of the synthetic signal sorted in decreasing order

B. Model order selection for a synthetic signal

The test signal is a sum ofr = 5 undamped complex
exponentials plus a complex colored noise. For eachk ∈
{1, . . . , r}, the kth exponential is characterized by its am-
plitude αk and its polezk = ei2πfk , where fk ∈ R is its
frequency. The values of the parameters are given in table II.
The additive noise has been obtained by applying the filter

TABLE II

PARAMETERS OF THE SYNTHETIC SIGNAL

Frequency 0.1 Hz 0.102 Hz 0.4 Hz 0.7 Hz 0.9 Hz
Amplitude 100 100 10 50 100

H(z) = 1
1−0.95 z−1 to a complex white gaussian noise, whose

variance has been chosen so that the resulting Signal Noise
Ratio (SNR) is 40 dB. The periodogram of the resulting test
signal is represented in figure 2-a. It was computed from
a signal of length 255, multiplied by a Blackman window,
chosen for its high leakage rejection (-57 dB), and zero-
padded to obtain 65536 points in the frequency domain. In
particular, it can be noticed that the two complex exponentials
of lowest frequency are not resolved by the periodogram.

The ESTER method is compared to several other sig-
nal enumeration techniques, among which three Information
Theoretic Criteria (ITC), known as theAkaike Information
Criterion (AIC) [5], the Minimum Description Length(MDL)
[5], and theEfficient Detection Criterion(EDC) [9] which is
known to be a robust generalization of AIC and MDL. These
methods consist in minimizing a cost function which involves
the singular values{σ1, . . . , σn}:

ITC(p) = −(n − p) l ln

0BBBBB� nQ
q=p+1

σ2
q

! 1
n−p

1
n−p

nP
q=p+1

σ2
q

1CCCCCA+ p (2n − p) C(l) (23)

whereC(l) is a function ofl. The AIC criterion is defined
by choosingC(l) = 1 and the MDL criterion is defined by
choosingC(l) = 1

2 ln(l). The EDC criteria are obtained for all
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functions ofl such that lim
l→+∞

C(l)
l

= 0 and lim
l→+∞

C(l)
ln(ln(l)) =

+∞. We choseC(l) =
√
l ln(ln(l)), for which we obtained

the best results. The singular values have been obtained by
computing the SVD of a Hankel data matrix containingn =
128 rows andl = 128 columns, involving then+ l−1 = 255
samples of the whole signal. Figure 2-b displays the highest
pmax = 25 singular values. Note that the singular values do
not present a significant decrease beyondp = 5.
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Fig. 3. Model order selection for the synthetic signal
(a) AIC, MDL, and EDC criteria
(b) Gap criterion
(c) C1, C2, Cm1, andCm2 criteria
(d) ESTER criterion

Figure 3-a displays the values of the AIC (solid line),
MDL (dashed line) and EDC (dotted line) criteria, such as
formulated in the above equation, forp ∈ {1 . . . pmax}. None
of them reaches a minimum atp = r = 5. This failure might
be explained by the presence of the surrounding noise, whose
power spectral density is not uniform, contrary to the additive
white noise hypothesis on which these estimators basically
rely. As expected, the EDC criterion is more robust than AIC
and MDL, but its minimum is obtained forp = 8. Figure 3-b
represents the criterion proposed in [12] for detecting thegap
in the singular values decrease. It can be noticed that this
criterion selects the right valuep = r = 5, but the value
p = 3 is almost as much emphasized. Figure 3-c displays
new ITC criteria proposed in [16] to address the colored noise
case5. The best results were obtained withC2, which reaches
a minimum atp = 6 ≃ r.

Finally, figure 3-d displays the ESTER criterionJ(p) for
p ∈ {1, . . . , pmax}. It can be noticed that the global maximum

5These new criteria are referred to asC1 (solid line),C2 (dashed line),Cm1

(dotted line) andCm2 (circles line). The common value of the parameters
M1 andM2 defined in [16] was set ton

2
− 1.

TABLE III

RATES OF SUCCESSFUL SIGNAL ENUMERATION FOR VARIOUSN

N 125 250 500
AIC 8 % 2 % 0 %
MDL 48 % 61 % 70 %
EDC 38 % 58 % 77 %

gap criterion 47 % 63 % 76 %
C2 35 % 44 % 44 %

ESTER 48 % 63 % 76 %

TABLE IV

RATES OF SUCCESSFUL SIGNAL ENUMERATION FOR VARIOUSSNR

SNR 10 dB 20 dB 30 dB
AIC 3 % 2 % 2 %
MDL 45 % 61 % 65 %
EDC 18 % 58 % 77 %

gap criterion 28 % 63 % 75 %
C2 13 % 44 % 61 %

ESTER 36 % 63 % 76 %

is reached atp = r = 5, despite the surrounding noise, which
was not included in the model.

C. Statistical performance comparison

Below, the ESTER method and the above-mentioned sig-
nal enumeration techniques are applied to various synthetic
signals. These signals consist of a sum of real-valued and
undamped sinusoids, plus a colored noise. The number of
sinusoids is uniformly distributed between 1 and 10, so thatthe
model orderr belongs to{2 . . . 20}. Their amplitudes, phases
and frequencies are randomly distributed in the intervals
[1, 10], ] − π, π] and

]
− 1

2 ,
1
2

]
. The additive noise is obtained

by filtering a white gaussian noise by the high-pass filter
1 − 0.5 z−1 (whose rejection is lower than 10 dB).

As proposed in section IV, the robustness of the ESTER
method is improved here by detecting the greatest value ofp
for which the ESTER criterionJ(p) reaches a local maximum
which is greater than one tenth of the global maximum. Ta-
bles III and IV show the rates of successful signal enumeration,
averaged over 10000 independent runs, for various values of
the window lengthN and the SNR (other analysis parameters
are n = ⌊N/2⌋ and pmax = 22). In table III, the SNR is
fixed to 20 dB, and the experiment is run forN = 125,
N = 250 andN = 500. In table IV,N is fixed to 250, and the
experiment is run for a low SNR (10 dB), a moderate SNR (20
dB) and a high SNR (30 dB). The obtained percentages have
been rounded towards the nearest integer, since the number
of independent runs (10000) guarantees that the confidence
interval lies between±1% around the estimated rate, for a
95% confidence level.

It can be noticed that the AIC is ineffective for processing
these synthetic data. Besides, the successful rate of theC2

criterion [16] is always lower than that of all the other
methods. The MDL criterion seems to be more robust than
ESTER to low SNRs. However, ESTER outperforms MDL
both for high values ofN and high SNRs. Compared to the
EDC criterion, ESTER presents similar performance for high
N and high SNRs, but it is more robust to low values ofN
and low SNRs. Finally, ESTER behaves similarly to the gap
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criterion [12] for all values ofN . However, it is more robust to
low SNRs. It can be noticed that although the ESTER method
relies on a noise-free signal model, its performance does not
collapse at low SNRs.

D. Model order selection for a musical signal
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Fig. 4. Periodogram and singular values of a piano signal
(a) periodogram of the piano signal in dB
(b) singular values of the piano signal sorted in decreasingorder

This section illustrates the application of the ESTER method
to a musical signal. The study deals with a piano tone, C5,
sampled at 11025 Hz, from which a segment of255 samples
(23 ms) has been extracted. Note that audio signals often
require some pre-processing before applying the ESPRIT al-
gorithm. For example, signals with a high number of sinusoids
(typically low-pitched sounds) may first be decomposed into
several sub-band signals (via filtering/decimating, as proposed
in [33]). In this example, this pre-processing is not used, since
the chosen piano tone has few sinusoidal components. In other
respects, it is well known that the energy of audio signals is
not evenly distributed over frequencies. Therefore we useda
pre-emphasis filter obtained by linear prediction at order 7to
compensate the energy decrease.

The periodogram of the filtered piano signal is displayed
in figure 4-a. In this figure, sixteen sharp spectral peaks
clearly rise above the surrounding noise level. Thepmax = 40
highest singular values of the data matrix6 are represented
in figure 4-b. Clearly, these singular values collapse beyond
p = 16, which suggests a modeling order equal to16.

Figure 5-a displays the AIC (solid line), MDL (dashed line)
and EDC (dotted line) criteria. Only EDC reaches a minimum
at p = 16. However this minimum is not substantially lower
than the neighboring values. Figure 5-b represents the gap
criterion proposed in [12]. Contrary to the above-mentioned
ITC, this criterion here selects the right valuep = 16.
Figure 5-c displays the ITC criteria proposed in [16], with
the same parameters as in section V-B. None of them reaches
a minimum at p = 16. Finally, figure 5-d displays the
ESTER criterionJ(p) for all p ∈ {1, . . . , pmax}. The global

6The singular values have been obtained by computing the SVD ofa Hankel
data matrix containingn = 128 rows andl = 128 columns, as in section V-B.

maximum is reached atp = 16. It can also be noticed
that the error bounds obtained for lower values ofp are
relevant. Indeed, high values are reached atp = 4, 6, 12,
which in fact correspond to small jumps in the decrease of
the singular values (represented in figure 4-b). Therefore,the
ESTER method gives the expected model order, and moreover
the error bounds can be used to quantify the adequacy of a
possible lower modeling order. In particular, it can be noticed
that odd model orders do not fit the signal. Indeed, since this
signal is real-valued and centered, its spectrum is hermitian
symmetric with no constant component, which underlies an
even model order.
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Fig. 5. Model order selection for the piano signal
(a) AIC, MDL, and EDC criteria
(b) Gap criterion
(c) C1, C2, Cm1, andCm2 criteria
(d) ESTER criterion

VI. CONCLUSIONS

In this paper, we described how the estimation of a noiseless
ESM model is affected by applying the ESPRIT algorithm
with an erroneous model order. If the model order is over-
estimated, the true poles are among those estimated. On the
contrary, if the order is underestimated, the estimated poles can
be seen as approximations of some of the true ones. In this
last case, ana posteriori error boundwas given, which can be
computed without knowing the exact model order. Following
from this observation, we introduced the ESTER criterion for
selecting an appropriate model order. Since the initial method
was computationally expensive, we proposed a fast algorithm
for recursively computing the a posteriori error bounds. Then,
we showed the relevance of our criterion as an error bound,
and we illustrated the performance of the ESTER criterion on
synthetic signals and on a piano signal. In addition, we noted
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that the error bounds could be used to quantify the adequacy
of a possible lower modeling order. Finally, although it was
designed for the ESPRIT algorithm, the ESTER criterion can
be used with any High Resolution method. It can also be
adapted to estimate the order of the more generalPolynomial
Amplitude Complex Exponentials(PACE) model [34].

In presence of noise, we mentioned in section IV that
a robust way of selecting the modeling order consists in
detecting the greatest value ofp for which the ESTER criterion
J(p) reaches a local maximum greater than a fraction of its
global maximum. Future work will be dedicated to an analysis
of the effect of noise, in order to better exploit the information
provided by the ESTER criterion.

APPENDIX

Proof of theorem III.2.If ẑ = zk for somek ∈ {1 . . . r}, the
assertion is trivial, so we may assume that∀k ∈ {1 . . . r},
ẑ 6= zk. Let v̂ be a given unitary vector, and define the residual

e(p) , (W ↑(p) − ẑW ↓(p)) v̂. (24)

SinceW (p) v̂ = W (r)

[
v̂

0

]
, equation (24) yields

e(p) = (W ↑(r) − ẑW ↓(r))

[
v̂

0

]
. (25)

Substituting equations (3) and (4) into equation (25) yields

e(p) = V n
↓ (D − ẑ Ir)G

−1

[
v̂

0

]
. (26)

Since ∀k ∈ {1 . . . r}, ẑ 6= zk, D − ẑ Ir is non-singular.
Therefore, equation (26) yields

[
v̂

0

]
= G (D − ẑ Ir)

−1
V n

↓
†
e(p). (27)

Consider a given diagonal matrixΛ whose diagonal coeffi-
cients are positive. Then equation (27) is equivalent to

[
v̂

0

]
= GΛ (D − ẑ Ir)

−1
Λ

−1 V n
↓
†
e(p). (28)

Applying the 2-norm into equation (28) yields

‖v̂‖2 ≤ ‖GΛ‖2

∥∥∥(D − ẑ Ir)
−1

∥∥∥
2

∥∥∥Λ−1V n
↓
†
∥∥∥

2
‖e(p)‖2 .

(29)
Since W (r) is orthonormal andV n

Λ = W (r)GΛ,
‖GΛ‖2 = ‖V n

Λ‖2 = σmax(V
n
Λ). Moreover,

(D − ẑ Ir)
−1 is diagonal with diagonal entries 1

zk−bz , thus∥∥∥(D − ẑ Ir)
−1

∥∥∥
2

= 1
min

k∈{1...r}
|bz−zk|

. SinceV n
↓ is full-rank,

the singular values ofΛ−1V n
↓
† are the inverses of those of

V n
↓ Λ, so that

∥∥∥Λ
−1V n

↓
†
∥∥∥

2
= 1

σmin(V n
↓ Λ) . Finally, sincev̂ is

unitary, equation (29) yields

min
k∈{1...r}

|ẑ − zk| ≤
σmax(V

n
Λ)

σmin(V n
↓ Λ)

‖e(p)‖2 . (30)

Note that equation (30) is satisfied for all unitary vectorv̂
and all matrixΛ ∈ diag(R∗

+
r). Consequently, equation (7)

follows from equation (30).

Proof of proposition IV.1.It can be noticed that

E(p) =
(
W ↑(p)W ↑(p)

† −W ↓(p)W ↓(p)
†
)
W ↑(p).

Applying the 2-norm yields

‖E(p)‖2 ≤ dist (W ↑(p),W ↓(p)) ‖W ↑(p)‖2 (31)

where

dist (W ↑(p),W ↓(p)) ,
∥∥W ↑(p)W ↑(p)

† −W ↓(p)W ↓(p)
†
∥∥

2

is the distance between the subspacesSpan(W ↑(p)) and
Span(W ↓(p)), which satisfiesdist (W ↑(p),W ↓(p)) ≤ 1, as
shown in [32, pp. 76-77]. Since‖W ↑(p)‖2 ≤ ‖W (p)‖2 = 1,
the result follows from equation (31).
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