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Abstract. This paper provides an introduction to the field of data stream 
management and mining. The increase of data production in operational 
information systems prevents from monitoring these systems with the old 
paradigm of storing data before analyzing it. New approaches have been 
developed recently to process data ‘on the fly’ considering they are produced in 
the form of structured data streams. These approaches cover both querying and 
mining data. 

Keywords. Data processing, data streams, querying data streams, mining data 
streams. 

Introduction 

Human activity is nowadays massively supported by computerized systems. These 
systems handle data to achieve their operational goals and it is often of great interest to 
query and mine such data with a different goal: the supervision of the system. The 
supervision process is often difficult (or impossible) to run because the amount of data 
to analyze is too large to be stored in a database before being processed, due in 
particular to its historical dimension. 

This problem has recently been studied intensively, mainly by researchers from the 
database field. A new model of data management has been defined to handle “data 
streams” which are infinite sequences of structured records arriving continuously in 
real time. This model is supported by newly designed data processing systems called 
“Data Stream Management Systems”. These systems can connect to one or several 
stream sources and are able to process “continuous queries” applied both to streams 
and standard data tables. These queries are qualified as continuous because they stay 
active for a long time while streaming data are transient. The key feature of these 
systems is that data produced by streams are not stored permanently but processed ‘on 
the fly’. Note that this is the opposite of standard database systems where data are 
permanent and queries are transient. Such continuous queries are used typically either 
to produce alarms when some events occur or to build aggregated historical data from 
raw data produced by input streams. 

As data stored in data bases and warehouses are processed by mining algorithms, it 
is interesting to mine data streams, i.e. to apply data mining algorithms directly to 
streams instead of storing them beforehand in a database. This second problem has also 
been studied and new data mining algorithms have been developed to be applicable 
directly to streams. These new algorithms process data streams ‘on the fly’ and can 
provide results either based on a portion of the stream or on the whole stream already 
seen. Portions of streams are defined by fixed or sliding windows. 
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Several papers, tutorials and books have defined the concept of data streams (see for 
instance [1], [2], [3], [4], [5]). We recall here the definition of a data stream given in 
[3]:

“A data stream is a real-time, continuous, ordered (implicitly by arrival time or 
explicitly by timestamp) sequence of items. It is impossible to control the order in 
which items arrive, nor is it feasible to locally store a stream in its entirety.” 

The streams considered here are streams of items (or elements) in the form of 
structured data and should not be confused with streams of audio and video data. Real-
time means here also that data streams produce massive volumes of data arriving at a 
very high rate. Table 1 shows an example of a data stream representing electric power 
consumption measured by many communicating meters in households (see [6]).

Table 1. Example of a data stream describing electric power metering 

Timestamp Meter Active P (kW) Reactive P (kVAR) U (V) I (A)

… … … … … …

16/12/2006-17:26:12 86456422 5,374 0,498 233,29 23

16/12/2006-17:26:32 64575861 5,388 0,502 233,74 23

16/12/2006-17:26:11 89764531 3,666 0,528 235,68 15,8 

16/12/2006-17:29:28 25647898 3,52 0,522 235,02 15

… … … … … 

This paper provides an introduction to the data stream management and mining 
field. First, the main applications which motivated these developments are presented 
(telecommunications, computer networks, stock market, security, …) and the new 
concepts related to data streams are introduced (structure of a stream, timestamps, time 
windows, …). A second part introduces the main concepts related to Data Stream 
Management Systems from a user point of view. The third part presents some results 
about the adaptation of data mining algorithms to the case of streams. Finally, some 
solutions to summarize data streams are briefly presented since they can be useful 
either to process streams of data arriving at a very high rate or to keep track of past data 
without storing them entirely. 

1. Applications of data stream processing 

Data stream processing covers two main aspects: (1) processing queries defined on one 
or several data streams, possibly also including static data; (2) performing data mining 
tasks directly on streams, usually on a unique stream. For both of these aspects, the 
following requirements should be met: 

Processing is done in real-time, following the arrival rate in the streams and 
not crashing if too many items arrive 
Each item of the stream is processed only once (one-pass processing) 
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Some temporary storage of items of the streams may be considered but with a 
bounded size 

We divide the applications of data stream processing in two categories: 

Real-time monitoring (supervision) of Information Systems. Whatever the 
sector of activity, current Information Systems (IS) manage more and more 
data for supporting human activity. The supervision of these systems (for 
instance supervision of a telecommunication network) requires the analysis of 
more and more data. It is not possible anymore to adopt the ‘store then 
process’ strategy which has been used until now by maintaining large data 
warehouses. There is a strong need for real-time supervision applied on 
detailed data instead of batch supervision applied on aggregate data. This can 
only done by processing data on the fly which is the approach developed by 
data stream processing. 

Generic software for operational systems managing streaming data. There 
are many operational Information Systems for which the main activity is to 
process streams of data arriving at a high rate. It is the case for instance in 
finance where computerized systems assist traders by analyzing automatically 
the evolution of the stock market. Such systems are today developed without 
any generic tool to process streams, exactly as first Information Systems were 
developed using files to store data before data base technology was available. 
Data stream processing solutions will provide generic software to process 
queries on streams, analyze streams with mining algorithms and broadcast 
resulting streams. 

Supervision of computer networks and telecommunication networks has been one 
of the first applications motivating research on data streams. Supervision of computer 
networks consists in analyzing IP traffic on routers in order to detect either technical 
problems on the network (congestion due to undersized equipment) or usage problems 
(unauthorized intrusion and activity). These applications fall into the first category of 
real-time monitoring of IS. The size of data to be analysed is huge since the utmost 
detailed item to be analyzed is an IP packet. Typical rate is several tens of thousands of 
records per second to be processed when raw detailed data is already sampled by 1/100. 
Typical queries on streams for these applications are the following: find the 100 most 
frequent couples of IP addresses (@sender, @destination) on router R1, how many 
different couples (@sender, @destination) seen on R1 but not R2, and this during the 
last hour ?

Finance is today the domain where first commercial data stream management 
systems (see [7] and [8] for instance) are used in an industrial way. The main 
application in finance is to support trading decisions by analyzing price and sales 
volume of stocks over time. These applications fall into the second category of 
operational systems whose first goal is to manage streams of data. Typical queries on 
streams for these applications are the following: find stocks whose price has increased 
by 3% in the last hour and the volume of sales by 20% in the last 15 minutes.

G. Hebrail / Data Stream Management and Mining 91



An interesting other (artificial) application is the “Linear Road Benchmark” (see 
[9]). The “Linear Road Benchmark” is a simulator of road traffic which has been 
designed to compare the performance of different Data Stream Management Systems. 
It simulates road traffic on an artificial highway network. Vehicles transmit 
continuously their position and speed: all data are received by the Data Stream 
Management System which is in charge of supervising traffic by computing for each 
vehicle a toll price depending on the heaviness of the traffic: high traffic on a highway 
portion leads to a high price. Computed toll are sent in real-time to vehicles so that they 
can adapt their route to pay less. This system – though only imaginary – is interesting 
because it falls in both of the categories described above: the result of a real-time 
supervision is directly re-injected in the operational system. 

Other applications are described in [3] and concern web log analysis and sensor 
networks. 

2. Models for data streams 

2.1. Structure of data streams 

As recalled in the introduction, a data stream is an infinite sequence of items 
(elements). Usually, items are represented by a record structured into fields (i.e. a 
tuple), all items from the same stream having the same structure. Each item is 
associated with a timestamp, either by a date field in the record (this is referred to 
explicit timestamping) or by a timestamp given when an item enters the system (this is 
referred to implicit timestamping). Still related to the representation of time in streams, 
the timestamp can be either physical (i.e. a date) or logical (i.e. an integer which 
numbers the items). Implicit timestamping ensures that items arrive in the order of 
timestamps while it is not true for explicit timestamping. Table 1 showed an example 
of explicit physical timestamp. Table 2 shows an example of data stream figuring IP 
sessions described by implicit logical timestamps. 

Table 2. Example of a data stream describing IP sessions 

Timestamp Source Destination Duration Bytes Protocol

… … … … … …

12342 10.1.0.2 16.2.3.7 12 20K http

12343 18.6.7.1 12.4.0.3 16 24K http

12344 12.4.3.8 14.8.7.4 26 58K http

12345 19.7.1.2 16.5.5.8 18 80K ftp

… … … … … …

2.2. Model of data streams 

Following [4], the contents of a stream describe observed values which have to be 
related to one or several underlying signals: the model of the stream defines this 
relationship. An observation is defined by a couple (ti, mi) where ti is a timestamp and 
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mi is a tuple of observed values. For instance in Table 2, ti=i since the timestamp is 
logical and m12342=(10.1.0.2, 16.2.3.7, 12, 20K, http).

There are several possibilities to define one underlying signal from observations. 
For instance in the stream of Table 2, one may be interested in: 

the number of bytes transmitted at each timestamp. This is called the time
series model where each observation gives directly the value of the underlying 
signal. 
the total number of bytes going through the router since the beginning of the 
stream. This is called the cash register model where each observation gives a 
positive increment to add to the previous value of the signal to obtain the new 
value. When increments can be negative the model is called the turnstile
model.

Another possibility is to define several signals from a single stream. This is the 
case when the stream contains information related to several objects: one signal per 
object may be extracted from the stream. For instance in Table 1, one may define one 
signal per meter and in Table 2, one may define one signal per @sender IP address or 
per couple (@sender, @destination). Again the model can be the time series, the cash 
register or the turnstile model for each underlying signal. 

Depending on the model of the stream, the transformation of observations to the 
defined underlying signals may be easy or difficult. For instance, the transformation 
requires large computations when there is a very large number of underlying signals 
(for instance in Table 2 if there is one signal per @sender IP address). 

2.3. Windows on data streams 

In many applications, the end-user is not interested in the contents of the whole stream 
since its beginning but only in a portion of it, defined by a window on the stream. For 
instance, a typical query may be: find the 100 most frequent @sender IP address 
during the last hour. There are several ways to define windows on a stream: 

The window can be defined logically (in terms of number of elements, ex: the 
last 1000 elements) or physically (in terms of time duration, ex: the last 30 
minutes). 
The window can be either a fixed window (defined by fixed bounds, ex: 
September 2007), a sliding window (defined by moving bounds, ex: last 30 
minutes), or a landmark window (one fixed and one moving bound, ex: since 
September, 1st, 2007). 

Finally, the end-user has to define the refreshment rate for the production of the 
results of queries/data mining tasks (ex: give, every 10 minutes, the 100 most frequent 
@sender IP address during the last hour). Again the refreshment rate can be defined 
either logically or physically. 
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3. Data stream management systems 

Data Base Management Systems (DBMS) are software packages which help to manage 
data stored on disk. A model is available to define structures of data (usually the 
relational model) and a query language enables to define/modify structures and to 
insert/modify/retrieve data in the defined structures. The most popular query language 
is the SQL query language. A DBMS also offers other services like transaction 
processing, concurrency control, access permission, backup, recovery, … It is 
important to note that in a DBMS data is stored permanently and that queries are 
transient.

Though there is not yet a stable definition of a Data Stream Management System 
(DSMS), DSMSs can be seen as extensions of DBMSs which also support data 
streams. The structure of a data stream is defined in the same way as a table in a 
relational database (i.e. list of fields/attributes associated with a data type), but there is 
no associated disk storage with a stream. A data stream is connected to a source where 
data arrives continuously (for instance a TCP/IP port) and there is no control on the rate 
of arrival in the source. If the DSMS is not able to read all data in the source, the 
unread data is lost. 

3.1. Continuous queries 

The key feature of a DSMS is that it extends the query language to streams. The 
semantics of a query has to be redefined when it is applied to streams. The concept of 
continuous query has been introduced to do so. The result of a query on a stream can be 
either another stream or the maintenance of a permanent table which is updated from 
the contents of the streams. Thus queries are permanent and process data ‘on the fly’ 
when it arrives: this explains why queries on streams are called continuous. 

Let us consider the following stream describing the orders from a department store, 
sent to this stream as there are created: 

ORDERS (DATE, ID_ORDER, ID_CUSTOMER, ID_DEPT, TOTAL_AMOUNT) 

The following query filters orders with a large amount: 

SELECT DATE, ID_CUSTOMER, ID_DEPT, TOTAL_AMOUNT 
FROM ORDERS 
WHERE TOTAL_AMOUNT > 10000; 

This query can be processed ‘on the fly’ (without storing the whole stream) if its 
result is output as another stream. 

Let us now consider the following query computing the sum of sales per 
department: 

SELECT ID_DEPT, SUM(TOTAL_AMOUNT) 
FROM ORDERS 
GROUP BY ID_DEPT; 
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The result of this query is typically a permanent table which is updated from the 
contents of the stream. Note that the stream does not need to be stored since the update 
of the result can be done incrementally. It is also possible to generate another stream 
from the permanent updated table by sending to this new stream at the refreshment rate 
either the whole table, the inserted tuples or the deleted tuples between the refreshment 
timestamps. 

These two queries can be extended easily to join the stream to a permanent table 
describing customers, for instance for the last query: 

SELECT ORDER.ID_DEPT, CUSTOMER.COUNTRY, SUM(TOTAL_AMOUNT) 
FROM ORDERS, CUSTOMER 
WHERE ORDERS.ID_CUSTOMERS=CUSTOMER.ID_CUSTOMER 
GROUP BY ID_DEPT, CUSTOMER.COUNTRY; 

Again, this query can be evaluated without storing the stream, by joining on the fly 
the tuples from the stream to the ones of the permanent table and maintaining 
incrementally the aggregates. This is true when the customer information is available in 
the permanent table at the time an order corresponding to the customer arrives in the 
stream. 

But things are not always so easy. There are many cases where it is not possible to 
produce the result of the query without storing the whole stream. We define a second 
stream containing the different bills associated with orders, several bills being possibly 
associated with one order and arriving at different times: 

BILLS (DATE, ID_BILL, ID_ORDER, BILL_AMOUNT) 

Let us consider the following query which is also an example illustrating that joins 
of several streams can be handled by a DSMS: 

SELECT ORDERS.ID_ORDER, TOTAL_AMOUNT - SUM(BILL_AMOUNT) 
FROM ORDERS, BILLS 
WHERE ORDERS.ID_ORDER = BILL.ID_ORDER 
GROUP BY ORDERS.ID_ORDER, TOTAL_AMOUNT 
HAVING TOTAL_AMOUNT - SUM(BILL_AMOUNT) != 0; 

This query lists the orders for which the total amount has not been covered exactly 
by bills. To process this query, it is not necessary to keep in memory the elements of 
the BILLS stream once they have been joined to their corresponding ORDERS 
element. But it is necessary to keep all elements of the ORDERS stream: indeed, since 
the number of bills associated with an order is not known, the system always has to 
expect a new bill to appear for each arrived order. Such queries are called ‘blocking 
queries’ because they cannot be evaluated ‘on the fly’. There are several solutions to 
this problem and the most common one is to define windows on the streams. The user 
specifies on each stream a window on which the query applies, for instance: 
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SELECT ORDERS.ID_ORDER, TOTAL_AMOUNT - SUM(BILL_AMOUNT) 
FROM ORDERS [LAST 30 DAYS], BILLS [LAST DAY]
WHERE ORDERS.ID_ORDER = BILL.ID_ORDER 
GROUP BY ORDERS.ID_ORDER, TOTAL_AMOUNT 
HAVING TOTAL_AMOUNT - SUM(BILL_AMOUNT) != 0; 

This new query is restricted to the production of the result considering only the 
orders of the last 30 days and the bills of the last day. The query is then ‘unblocked’ 
and can be evaluated with a limited temporary storage of the contents of the streams 
(last 30 days for orders and at the most last day for bills). It is interesting to note that 
the end-user himself specifies how to limit the scope of the query by accepting that 
bills not issued 30 days after their orders will never be considered to produce a result in 
this query. 

3.2. Main features of a DSMS 

As mentioned before, a DSMS provides a data model to handle both permanent tables 
and streams. It enables the user to define continuous queries which apply to both 
permanent tables and streams and produce either new streams or update some other 
permanent tables. There are two main approaches to provide such a facility to the user: 
(1) the definition of an extension of the SQL language (see for instance the STREAM 
[10] and TelegraphCQ [11] systems), (2) the definition of operators applicable to 
streams which are combined to produce the desired result (see for instance the Aurora 
system [12]).

When designing a DSMS, several problems have to be solved, the most 
challenging ones being the following: 

Defining for a set of continuous queries an optimized execution plan which 
reduces temporary storage and allows shared temporary storage between the 
queries. Note that the typical use of a DSMS (see the Linear Road benchmark 
in [9]) leads to the definition of several queries producing intermediate 
streams which are then used by several other queries. Such execution plans 
have to be dynamic because the rate of arrival in streams may evolve and new 
queries may be defined by the user. Interesting solutions have been studied in 
the STREAM project (see [10]).
Being able to face important variations in rates of arrival in input streams. As 
seen before, data arriving in data streams are either processed immediately or 
lost. DSMSs must ensure that there is no crash in this case and that the 
performance deteriorates in a controlled way. The main approach – called load 
shedding - is to place random sampling operators so that all elements of the 
streams are not processed when the system is overloaded. The placement of 
these operators is optimized dynamically to maximize a function of quality of 
service (see [12], [13] for instance). 

3.3. Main existing DSMSs 

Existing DSMSs fall into two main categories: (1) general purpose DSMSs, (2) 
specialized DSMSs dedicated to a particular domain. 
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General-purpose DSMSs

In this category, the most famous ones are the following research prototypes: 
STREAM ([10]), TelegraphCQ ([11]), and Aurora-Medusa-Borealis ([12]). STREAM 
is the result of a project at Stanford University: a new system has been built from 
scratch and has introduced many new concepts and solutions related to the 
management of data streams. In particular, the CQL language has been defined as an 
extension of the SQL language to handle continuous queries with windowing facilities. 
Though a demo is available on-line and the software can be downloaded, it is not really 
usable in practice (see [6]). TelegraphCQ has been developed at the University of 
Berkeley as an extension to the PostgreSQL system to support streams and continuous 
queries defined on streams. New continuous queries can be added dynamically to the 
system and it is usable for applications where there is no need to process very fast 
streams. The Aurora system has been developed at Brown University, MIT and 
Brandeis. In this system, queries are defined by combining operators which take 
streams as input and produce a new stream as output. A lot of interesting work has been 
done on load shedding by defining and optimizing a function of quality of service when 
the system becomes overloaded. The follow-up projects Medusa and Borealis focused 
on a distributed version of Aurora. 

There are also a few commercial general-purpose DSMSs. The Aurora project led 
to the Streambase software (see [8]). The TelegraphCQ project led to the 
Aminsight/Truviso software (see [7]).

Specialized DSMSs

Specialized DSMSs have been developed to solve data stream problems from a 
particular domain of application. In these systems, specific operations of the domain 
are optimized. The most popular systems are Gigascope [14] (network monitoring), 
Hancock [15] (analysis of telecommunication calls), NiagaraCQ [16] (large number of 
queries on web contents), Statstream [17] (correlations between a large number of 
sensors) and Traderbot [18] (analysis of stock market). 

A complete survey of DSMSs which was up to date in 2004 can be found in [19].
It also includes work on sensor networks which is related to data stream management. 

4. Data stream mining 

Data stream mining can be defined as ‘applying data mining algorithms to one or 
several data streams’, with the same constraints as DSMSs: (1) one-pass, (2) limited 
memory and CPU. From a user point of view, the data mining task can apply either to 
the whole stream since its beginning or to a part of it defined by a window. Depending 
on the type of window, the algorithms are different: 

Whole stream: algorithms have to be incremental. This is the case for instance 
for neural network algorithms which are incremental in nature. Some non-
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incremental algorithms can be modified to do so. This has been done for 
instance for decision trees (see below). 
Sliding window: algorithms have to be incremental and have the ability to 
forget the past of the stream though the corresponding elements are not 
accessible anymore. This is the case for additive methods like PCA (see 
below). 
Any past portion of the stream not decided in advance: algorithms have to be 
incremental and some summaries of the past must be kept in limited memory. 
Summaries of data streams can be done by several means; a solution based on 
micro-clustering is described below. 

We do not cover here all stream mining algorithms but only illustrate these three 
cases by one example of each. 

4.1. Building decision trees on data streams 

Some early work has been done by Domingos and Hulten to build decision trees 
incrementally from data streams (see [20]). The idea is that it is not necessary to wait 
for all examples to decide of a split in the tree. A statistical test is performed to decide 
when a split can be done. The statistical test can be done by keeping track of 
appropriate statistics which can be computed incrementally in bounded space. 
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Figure 1. PCA on a sliding window 
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4.2. Performing PCA incrementally on a sliding window 

Principal Component Analysis (PCA) is performed by singular value decomposition 
(svd) of the covariance (correlation) matrix between variables. It is easy to prove that 
the covariance matrix can be computed incrementally. Moreover, if the sliding window 
is for instance 24 hours and the refreshment rate is 1 hour, it is possible to maintain 25 
covariance matrices as shown in Figure 1. At the end of each hour period, the 
covariance matrix can be computed from the last 24 ones and the svd is performed. 
This solution is applicable to any additive or pseudo-additive data mining method. 

4.3. Performing clustering on any past portion of the stream 

Several clustering algorithms have been developed to be applicable to data streams (see 
for instance [21]). The Clustream algorithm (see [22]) allows to perform clustering on 
any past portion of a stream where all fields are numerical. This algorithm works in 
two steps: (1) a clustering is performed on-line to build and maintain a large number of 
micro-clusters whose contents follow the contents of the stream, (2) a clustering of the 
micro-clusters is done off-line on demand to produce the final clustering. 

The key concept of this approach is that micro-clusters are defined in such a 
manner that it is possible to ‘substract’ micro-clusters at date T1 from micro-clusters at 
date T2 to obtain micro-clusters describing the stream between T1 and T2. This is done 
by storing for each micro-cluster additive statistics in a structure called Cluster Feature 
Vector CFV (sum of values and sum of squares for every field, including the timestamp 
field). Snapshots of the micro-clusters are taken regularly and compacted 
logarithmically as micro-clusters get older: this approach is called tilted time 
windowing and ensures that the summary of the whole stream is stored with bounded 
memory (see Figure 2). The drawback is that there is less detail for older data than for 
recent data but this is often acceptable in applications. 

tc

Figure 2. Tilted time structure: the size of storage decreases logarithmically when data gets older 

5. Synopses structures 

A strong constraint both in querying and mining data streams is to process data ‘on the 
fly’, facing variations in input streams. For many applications, it is nevertheless 
necessary to keep track of information related to a maximum number of elements of the 
stream but in bounded space. As seen in the previous sections, a common way to do so 
is to restrict the scope of the query (or the mining task) by windowing. In many 
applications, this solution is not efficient enough and much work has been done to 
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summarize the contents of data streams in order to produce an approximate but 
controlled result. 

Synopses structures can be used both for answering queries and applying data 
mining algorithms to streams. Many synopses structures have been studied. We present 
here a few examples of them. 

We can distinguish between temporal and memory management approaches. The 
most famous approach to temporal management is the concept of tilted time windows
(introduced in [23]) which compacts historical data by forgetting details in a 
logarithmic way with time, thus keeping a summary of the past with bounded memory. 
This approach of temporal management can be combined to any memory management 
approach. For instance, Clustream combines tilted time windows and micro-clustering. 

As for memory management, many approaches have been studied, mainly: random 
samples, histograms and quantiles, micro-clusters and sketches. Since Clustream is an 
example of synopsis in the form of micro-clusters, we only develop below two 
approaches: random sampling and sketches. 

Summarizing by random sampling

On-line random sampling from data streams is a problem because the size of the 
sample has to be bounded and the size of the data set from which elements are selected 
is not known when sampling begins, i.e. at the beginning of the stream. Some 
algorithms exist to overcome this problem: the reservoir algorithm (see [24]) maintains 
a fixed size uniform random sample from the beginning of the stream to current time. 
Some elements are selected randomly from the stream with a decreasing probability 
and replace randomly elements already in the sample. The decreasing probability 
ensures that the sample is uniform over the period. 

Some extensions and new approaches have been developed to extract random 
samples from a sliding window defined on the stream (see [25]). In this case, the 
problem is that elements of the sample have to be removed and replaced by new ones 
when they expire from the window, under the constraint of still keeping uniform the 
sample. 

A combination of random sampling and tilted time windowing is described in the 
paper of Baptiste Csernel in this book. 

Summarizing with sketches

Sketches are data structures dedicated to a specialized task which can be updated 
incrementally to maintain in small space summarized information. They are often based 
on the use of hash functions which project randomly stream data on the small structure. 
Approximate answers to queries can be obtained from sketches with probabilistic 
bounds on errors. Since data streams produce data with a high rate, the probabilistic 
bounds are quite tight. Popular sketches are the Flajolet sketch which counts the 
number of distinct objects appearing in a stream (see [26]) and the count sketch 
algorithm (see [27]) which maintains the k most frequent items in a stream. These two 
approaches provide the result with storage much smaller than the number of distinct 
items appearing in the stream. 
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Conclusion 

This paper has introduced the main concepts of data stream management and mining. 
The two main directions are the development of Data Stream Management Systems 
(DSMS) which enable to query one or several streams, and the development of data 
stream algorithms which enable to mine data streams without storing them entirely. 
Synopses are basic tools which enable to process streams using a smaller storage space: 
they can be used both in query and mining tasks. 

As for perspectives on DSMSs, there is some current work on event processing 
systems which provide a more convenient querying language for streams describing 
events (see for instance the Cayuga [28] and SASE [29] projects). The first commercial 
DSMSs appear on the market and are used mainly in financial applications. 

As for perspectives on data stream mining, one challenge is to build summaries of 
the whole stream in order to be able to apply data mining tasks to any past portion of 
the stream. Another challenge is to apply data mining algorithms to several streams, 
without joining them but keeping a summary of each stream which preserves the 
relationship between the streams. The paper of Baptiste Csernel in this book describes 
an approach to do so. 
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