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Abstract. We revisit two notions of difference between codewords, namely
separation and the existence of small witnesses, and explore their links.

1 Introduction

Let Q be an alphabet of size q. A subset C of Qn with |C| = M is an (n, M)q

or (n, M)-code. Elements c = (c1, . . . , cn) of C are codewords. Let R = R(C) =
logq M/n denote the rate of C.

Coding theory asks for codes (or sets) C such that every codeword c ∈ C is
as “different” as possible from all the others. The usual requirement is a large
minimum Hamming distance between codewords; the associated question is to
determine the maximum size of such a code.

We survey here two relaxations of this problem, namely, the notions of sep-
aration and witness, and their interplay.

In the first one, separation, we look for some minimum distance between
disjoint subsets of codewords (instead of merely -singletons of- codewords).

In the second relaxation, dealing with the existence of a witness, we look
for a small subset W ⊂ [n] of coordinates such that c differs from every other
codeword in W . In other words, c can be singled out from all the other codewords
by observing only a small subset of coordinates.

We then establish links between some separating and witness codes and con-
clude with a few open problems.

2 Separation

As an introductory illustration before the general case, consider hashing, central
in Computer Science and Coding, see, e.g., [12] and its references.

For a parameter t ≥ 2 a code C is called t-hashing if for any t distinct
codewords c1, . . . , ct ∈ C there is a coordinate 1 ≤ i ≤ n such that all values cj

i ,
1 ≤ j ≤ t are distinct.

An obvious necessary condition for the existence of a t-hashing family is
q ≥ t; it turns out to be sufficient too (see [11], [22], [23], [29] for bounds on the
rate of t-hashing families of growing length).

An extension of hashing was introduced in [6].



Definition 1. Let 2 ≤ t < u be integers. A subset C ⊂ Qn is (t, u)-hashing if
for any two subsets T,U of C such that T ⊂ U , |T | = t, |U | = u, there is some
coordinate i ∈ {1, . . . , n} such that for any x ∈ T and any y ∈ U, y 6= x, we have
xi 6= yi.

The concept of (t, u)-hashing is easily seen to generalize the standard one
and some variants of separation. Indeed, when u = t + 1, a (t, u)-hashing family
is (t + 1)-hashing; when t = 1, u = 3, we get (1, 2)-separation (see later).

The main use of (t, u)-hashing codes is as a tool to show the existence of high
rate parent-identifying codes ([6, 2], that we now describe.

2.1 Parent identifying codes

Let C be an (n, M)-code. Suppose X ⊆ C. For any coordinate i define the
projection

Pi(X) =
⋃

x∈X

{xi}.

Define the envelope e(X) of X by:

e(X) = {x ∈ Qn : ∀i, xi ∈ Pi(X)}.

Elements of e(X) are descendants of X. Observe that X ⊆ e(X) and e(X) = X
if |X| = 1.

Given a descendant s ∈ Qn, we want to identify at least one member of X (a
parent). From [6, 3], we have the following definition, generalizating case t = 2
from [18].

Definition 2. For any s ∈ Qn let Ht(s) be the set of subsets X ⊂ C of size
at most t such that s ∈ e(X). We shall say that C has the identifiable parent
property of order t (or is a t-identifying code, or has the t-IPP, for short) if for
any s ∈ Qn, either Ht(s) = ∅ or ⋂

X∈Ht(s)

X 6= ∅.

Parent identifying codes are motivated by their connection to digital finger-
printing and software piracy, see, e.g., [10], [9], [34].

Let Rq(t) := lim inf
n→∞

max R(Cn), where the maximum is computed over all t-

identifying codes Cn of length n. In [6], answering a question of [34], the following
is proved:

Theorem 1. Rq(t) > 0 if and only if t ≤ q − 1.

The proof is based on a connection between (t, u)-hashing and t-IPP:

Lemma 1. Let u = b(t/2 + 1)2)c. If C is (t, u)-hashing then it is t-identifying.



By the probabilistic method [1], one can obtain a lower bound on the rate of
(t, u = b(t/2 + 1)2c)-hashing families, and thus of t- identifying codes:

Theorem 2. Let u = b(t/2 + 1)2)c. We have

Rq(t) ≥
1

u− 1
logq

(q − t)!qu

(q − t)!qu − q!(q − t)u−t
.

The rate guaranteed by Theorem 2 is further improved in [2], where explicit
constructions of high rate (t, u)-hashing and t- separating families are given.

2.2 Generalized separation

Interest in separating codes comes mainly from digital fingerprinting [9]. A ven-
dor distributes digital copies of a copyrighted work, and wants to prevent the
users from making illegal copies. Watermarking can be used to give every sold
copy a unique ID, a digital fingerprint, identifying the buyer. If an illegal copy
subsequently appears, the user guilty of copying may be identified.

An interesting combinatorial problem arises when facing coalitions of pirates.
If several users collude, they may compare their copies. Every differing bit is
assumed to be part of the fingerprint and these are the only ones prone to
modification (by the so-called Marking Assumption).

The fingerprints the pirates are able to forge, based on the set X they hold,
form the so-called feasible set or envelope previously defined.

If the set (code) of valid fingerprints still makes it possible to trace at least
one guilty pirate out of a coalition of size t or less, we have the already discussed
t-identifiable parent property.

If the pirates are able to forge the fingerprint of an innocent user, we say that
this user is framed. Codes which prevent framing are called frameproof codes.

Definition 3. A sequence (T1, . . . , Tz) of pairwise disjoint sets of words is called
a (t1, . . . , tz)-configuration if #Tj = tj for all j. Such a configuration is separated
if there is a position i, such that for all l 6= l′ every word of Tl is different from
every word of Tl′ on position i.

A code is (t1, . . . , tz)-separating if every (t1, . . . , tz)-configuration is sepa-
rated. A t-separating code is also called a t-SS (separating system).

A few properties are covered by our general definition of (t1, . . . , tz)-separation:
with z = 2 we have the (t, u)-separation; when ti = 1 for each i, we recover z-
hashing; when z = t + 1, tz = u− t, and ti = 1 for i < z, (t, u)-hashing.

In earlier works on watermarking, (t, t)-separating codes have been called t-
SFP (secure frameproof) [33, 34]. The current terminology is older though [32].
The t-frameproof codes from [33, 34] are just (t, 1)-separating codes.

Non-binary (2, 1)- and (2, 2)-SS appear in [30].
Separating codes have also been studied in a set-theoretic framework, e.g.

[24]. Reference [21] gives various problems equivalent to (2, 1)-separation.



2.3 A sufficient condition for separation

For any word c = (c1, . . . , cn) ∈ Qn we define the support to be

χ(c) := {i | ci 6= 0}.

For any subset S ⊂ V , the support is

χ(S) :=
⋃
c∈S

χ(c).

We define the weight of subsets and codewords to be the size of their support,
and denote it w(c) := #χ(c) or w(S) := #χ(S).

We write t = (t1, . . . , tz). Given a t-configuration (T1, . . . , Tz), we define
the separating set Θ(T1, . . . , Tz) to be the set of coordinate positions where
(T1, . . . , Tz) is separated. Let θ(T1, . . . , Tz) := #Θ(T1, . . . , Tz) be the separating
weight. Clearly θ(T1, . . . , Tz) ≥ 1 is equivalent to (T1, . . . , Tz) being separated.
The minimum t-separating weight θt(C) is the least separating weight of any
t-configuration of C, previously studied in [32]. Clearly θ1,1(C) = d(C).

Define

P (t1, . . . , tz) :=
z−1∑
i=1

z∑
j=i+1

titj .

Note that if tj = 1 for all j, then

P (t1, . . . , tz) =
(

z

2

)
,

and if z = 2, then P (t1, t2) = t1t2. The following sufficient condition on mini-
mum distance for separability from [14] generalizes various results on separating
codes and perfect hashing families. Write (n, M, d)q for a q-ary code of minimum
distance d.

Proposition 1. An (n, M, d)q code Γ is t-separating if

d

n
> 1− 1

P (t)
.

Proof. Consider any t-configuration (T1, . . . , Tz) from Γ , and define the sum

Σ :=
z−1∑
i=1

z∑
j=i+1

∑
(x,y)∈Ti×Tj

d(x, y).

This is the sum of P (t1, . . . , tz) distances in the code, so

Σ ≥ P (t1, . . . , tz)d. (1)

Each coordinate can contribute at most P (t1, . . . , tz) to the sum Σ; if any coor-
dinate does contribute that much, then it separates. Hence we get that

Σ ≤ n(P (t)− 1) + θt. (2)

The proposition follows by combining the upper and lower bounds (1) and (2).



For sufficiently large alphabets, good separating codes are constructible from,
e.g., algebraic geometry (AG).

Theorem 3 (The AG Codes). [35] For any α > 0 there are constructible,
infinite families of codes A(N) with parameters [N,NR,Nδ]q for N ≥ N0(α)
and

R + δ ≥ 1− (
√

q − 1)−1 − α.

2.4 Concatenation

For small alphabets, we can resort to concatenation to build infinite families
of separating codes. Though this construction is well-known in various special
cases from the literature, we give a general statement below for the sake of
completeness. The outer codes used in concatenation will often be AG codes.

Definition 4 (Concatenation). Let C1 be an (n1, Q)q (the inner code) and
let C2 be an (n2,M)Q code (the outer code). Then the concatenated code C1 ◦C2

is the (n1n2,M)q code obtained by taking the words of C2 and mapping every
symbol on a word from C1.

Proposition 2. Let Γ1 be a (n1,M)M ′ code with minimum t-separating weight
θt(1) , and let Γ2 be a (n2,M

′)q code with separating weight θt(1) . Then the con-
catenated code Γ := Γ2 ◦ Γ1 has minimum separating weight θt = θt(1) · θt(2) .

Proof. Consider a t-configuration (T1, . . . , Tz) in Γ . Then there is a correspond-
ing configuration in Γ1, (T ′′1 , . . . , T ′′z ) which is separated on a set I of at least
θt(1) positions by assumption. Considering only the positions of Γ corresponding
to a particular position i ∈ I in Γ2, we get a t′-configuration (T ′1, . . . , T

′
z) in Γ1

where 1 ≤ t′j ≤ tj for all j. Clearly, (T ′1, . . . , T
′
z) must be separated on at least

θt(2) positions, and consequently θ(T1, . . . , Tz) ≥ θt(1)θt(2) .

2.5 A variation on the tetracode

The ternary construction of [14] makes use of three ingredient codes, and applies
twice the concatenation method. It gives an asymptotic family of codes which
are (2, 2)-, (3, 1)-, and (1, 1, 1)-separating.

The first seed is the (4, 32, 3)3 tetracode T , a simplex (all codewords are
at distance 3 apart). It follows that T is 3-hashing and (3, 1)-separating from
Proposition 1. The tetracode was first proved 3-hashing in [23]; combined with
the (2, 2)-separation property, this yields the 2-IPP property ([18]).

Let R1 be the (9, (32)3, 7)32 Reed-Solomon code, which is both (2, 2)- and
(1, 3)-separating, and 3-hashing, again by Proposition 1. The concatenated code
T ◦ R1 has parameters (36, 36)3, and by Proposition 2, it is (2, 2)- and (1, 3)-
separating, and 3-hashing. Concatenating it with A(N) over GF (36) results in
T ◦ R1 ◦ A(N), an infinite family of ternary (3, 1)- and (2, 2)-separating and
3-hashing codes with rate R′/6 ≈ 0.0352.



3 Witness

We now move to the second extension on the notion of minimum distance. We
consider only the binary case in this section and follow [13].

For x ∈ {0, 1}n, and W ⊂ [n], define the projection πW

πW : {0, 1}[n] → {0, 1}W

x 7→ (xi)i∈W

and say that W is a witness set (or a witness for short) for c ∈ C if πW (c) 6=
πW (c′) for every c′ ∈ C, c 6= c′. Codes for which every codeword has a small
witness set arise in a variety of contexts, in particular in machine learning theory
[4, 7, 17] where a witness set is also called a specifying set or a discriminant: see
[19, Ch. 12] for a short survey of known results and also [5, 25] and references
therein for a more recent discussion.

A code has the w-witness property, or is a w-witness code, if every one of
its codewords has a witness set of size w. Our concern in [13] was to study the
maximum possible cardinality f(n, w) of a w-witness code of length n.

3.1 Easy facts

Let C be the set of all n vectors of length n and weight 1. Then every codeword
of C has a witness of size 1, namely its support. Note the dramatic change for
the slightly different code C ∪ {0}. Now the all-zero vector 0 has no witness
set of size less than n. Bondy [7] shows however that if |C| ≤ n, then C is a
w-witness code with w ≤ |C|−1 and furthermore C is a uniform w-witness code,
meaning that there exists a single subset of [n] of size w that is a witness set for
all codewords.

A trivial lower bound on f(n, w) is based on a construction.

Proposition 3. We have: f(n, w) ≥
(

n
w

)
.

Proof. Let C =
(
[n]
w

)
be the set of all vectors of weight w. Notice that for all

c ∈ C, W (c) = support(c) is a witness set of c.

Note that the problem is essentially solved for w ≥ n/2; since f(n, w) is
increasing with w, we then have:

2n ≥ f(n, w) ≥ f(n, n/2) ≥
(

n
n/2

)
≥ 2n/(2n)1/2.

Thus, only the case w ≤ n/2 is considered here.

3.2 Upper bounds

In [13], an upper bound is obtained which comes close to the lower bound of
Proposition 3; the key result there is the following.



Theorem 4. Let g(n, w) = f(n, w)/
(

n
w

)
. Then, for fixed w, g(n, w) is a decreas-

ing function of n. That is:

n ≥ v ≥ w ⇒ g(n, w) ≤ g(v, w).

Theorem 4 has a number of consequences.

Corollary 1. For fixed w, the limit

lim
n→∞

g(n, w) =
f(n, w)(

n
w

)
exists.

Corollary 2. For w ≤ n/2, we have the upper bound:

f(n, w) ≤ 2w1/2

(
n

w

)
.

Set w = ωn and denote by h(x) the binary entropy function

h(x) = −x log2 x− (1− x) log2(1− x).

Corollary 2 together with Proposition 3 yield:

Corollary 3. We have

limn→∞
1
n log2 f(n, ωn) = h(ω) for 0 ≤ ω ≤ 1/2.

4 Links betwen (1, 2)-separation and witnesses

We first summarize the known facts here. Denote by R = R2 in this section
the largest possible rate of a (1, 2)- separating code. A lower bound on R is
easily provided by the non-constructive approach (see, e.g., [16]), yielding R ≥
1− (1/2) log 3.

For constructions,we use the fact pointed out in [26] that shortened Kerdock
codes K ′(m) for m ≥ 4 are (2, 1)-SS and concatenate them with the following
ones (with t = 2) from [36].

Theorem 5. Suppose that q = p2r with p prime, and that s is an integer such
that 2 ≤ t ≤ √

q−1. Then there is an asymptotic family of (t, 1)-separating codes
with rate

Rt =
1
t
− 1
√

q − 1
+

1− 2 logq t

t(
√

q − 1)
.

Corollary 4. There is a constructive asymptotic family of (2, 1)-SS with R =
0.2033.



Proof. Take an arbitary subcode of size 112 in K ′(4) which is a (15, 27) (2, 1)-
SS. Concatenate with a code of Theorem 5 code (t = 2) over GF (112), with
R ≈ 0.4355.

Let us now rephrase the classical proof of the upper bound, to emphasize the
relationship with witnesses. Consider any partition of [n] into two parts P1, P2.
Then, for any c ∈ C, P1 or P2 is a witness for c. Indeed, otherwise, c would
be matched by some ci on Pi, i = 1, 2 and c1 and c2 together would frame c.
Denoting by Ui the subcode of C with witness Pi, i = 1, 2 and making the two
parts (almost) equal, we get |C| ≤ |U1|+ |U2| ≤ 2.2dn/2e. Summarizing:

Proposition 4. The rate of the largest (1, 2)-separating code satisfies:
1− (1/2) log 3 ≈ 0.207518 ≤ R ≤ 1/2.

The gap between the lower and upper bounds is annoyingly wide, and narrow-
ing it seems a difficult problem. Let us nevertheless explore a possible approach
to improve the upperbound.

Consider a (1, 2)- separating code C(n, b2Rnc). Let c and c′ be two codewords
at distance w; thus |χ(c + c′)| = w. Then, by the preceeding discussion, P1 :=
χ(c + c′) is a witness for c and for c′. The idea is now to expurgate C from
its pairs of close-by codewords to end up with a subcode of increased minimum
distance, while preserving the rate. More precisely:

Definition 5. Denote by f(n, w,≥ d) the maximal size of a w-witness code with
minimum distance d. Let’s go asymptotics and set

lim supn→∞
1
n log2 f(n, ωn,≥ δn) := φ(ω, δ).

Finally, set φ(δ, δ) := φ(δ).

From Corollary 3, we know that for 0 ≤ δ ≤ 1/2, φ(δ) ≤ h(δ). As long as
φ(δ) < R, we keep expurgating. Note that there are at most f(n, i,≥ i) pairs of
codewords in C at distance i apart. This process results in a code with distance
bδnc retaining the original rate.

Define εδ ≥ 0 by setting φ(δ) := h(δ − εδ); or equivalently:
δ = h−1(R) + εδ.
We get the following “win-win” result:

Proposition 5. If εδ > 0, then i) or ii) hold:
i) R = 1/2 and the expurgated code satifies δ = h−1(R) + εδ > h−1(1−R),
i.e. lies above the Varshamov-Gilbert bound!
ii) R < 1/2.

5 Open problems

The size of optimal w-witness codes is asymptotically known. A few issues remain
open, among which:

– When is the sphere Sw(0) the/an optimal w-witness code?



– Do we have f(n, w) =
(

n
w

)
for w ≤ n/2 ?

– In the asymptotic case, can Corollary 3 be improved for δ ≤ ω ≤ 1/2 to
φ(ω, δ) < h(ω) ?

– A conjecture of [31] says that R2 obtained in Theorem 5 could be improved
to R2 = (1/2) − (2(q1/2 − 1))−1. This would give, with q = 112 like in
Corollary 4, R2 = 0.45 and through concatenation a constructive rate of
R = (3/50) log2 11 ≈ 0.207565, thus beating the non-constructive bound (by
an incredibly small quantity, though)!
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