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CONSISTENCY OF THE MAXIMUM LIKELIHOOD

ESTIMATOR FOR GENERAL HIDDEN MARKOV MODELS

R. DOUC, E. MOULINES, J. OLSSON, AND R. VAN HANDEL

Abstract. Consider a parametrized family of general hidden Markov mod-

els, where both the observed and unobserved components take values in a

complete separable metric space. We prove that the maximum likelihood esti-

mator (MLE) of the parameter is strongly consistent under a rather minimal

set of assumptions. As special cases of our main result, we obtain consistency

in a large class of nonlinear state space models, as well as general results on

linear Gaussian state space models and finite state models.

A novel aspect of our approach is an information-theoretic technique for

proving identifiability, which does not require an explicit representation for

the relative entropy rate. Our method of proof could therefore form a foun-

dation for the investigation of MLE consistency in more general dependent

and non-Markovian time series. Also of independent interest is a general

concentration inequality for V -uniformly ergodic Markov chains.

1. Introduction

A hidden Markov model (HMM) is a bivariate stochastic process (Xk, Yk)k≥0,

where (Xk)k≥0 is a Markov chain (often referred to as the state sequence) in a

state space X and, conditionally on (Xk)k≥0, (Yk)k≥0 is a sequence of independent

random variables in a state space Y such that the conditional distribution of Yk

given the state sequence depends on Xk only. The key feature of HMM is that

the state sequence (Xk)k≥0 is not observable, so that statistical inference has to

be carried out by means of the observations (Yk)k≥0 only. Such problems are

far from straightforward due to the fact that the observation process (Yk)k≥0

is generally a dependent, non-Markovian time series [despite that the bivariate

process (Xk, Yk)k≥0 is itself Markovian]. HMM appear in a large variety of

scientific disciplines including financial econometrics [17, 25], biology [7], speech

recognition [19], neurophysiology [11], etc., and the statistical inference for such

models is therefore of significant practical importance [6].

In this paper, we will consider a parametrized family of HMM with parameter

space Θ. For each parameter θ ∈ Θ, the dynamics of the HMM is specified by

the transition kernel Qθ of the Markov process (Xk)k≥0, and by the conditional

distribution Gθ of the observation Yk given the signal Xk. For example, the state
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and observation sequences may be generated according to a nonlinear dynamical

system (which defines implicitly Qθ and Gθ) of the form

Xk = aθ(Xk−1,Wk) ,

Yk = bθ(Xk, Vk) ,

where aθ and bθ are (nonlinear) functions and (Wk)k≥1 and (Vk)k≥0 are inde-

pendent sequences of i.i.d. random variables.

Throughout the paper, we fix a distinguished element θ⋆ ∈ Θ. We will always

presume that the kernel Qθ⋆ possesses a unique invariant probability measure

πθ⋆, and we denote by P̄θ⋆ and Ēθ⋆ the law and associated expectation of the

stationary HMM with parameter θ⋆ (we refer to section 2.1 for detailed defini-

tions of these quantities). In the setting of this paper, we have access to a single

observation path of the process (Yk)k≥0 sampled from the distribution P̄θ⋆. Thus

θ⋆ is interpreted as the true parameter value, which is not known a priori. Our

basic problem is to form a consistent estimate of θ⋆ on the basis of the observa-

tions (Yk)k≥0 only, i.e., without access to the hidden process (Xk)k≥0. This will

be accomplished by means of the maximum likelihood method.

The maximum likelihood estimator (MLE) is one of the backbones of statis-

tics, and common wisdom has it that the MLE should be, except in “atypical”

cases, consistent in the sense that it converges to the true parameter value as the

number of observations tends to infinity. The purpose of this paper is to show

that this is indeed the case for HMM under a rather minimal set of assumptions.

Our main result substantially generalizes previously known consistency results

for HMM, and can be applied to many models of practical interest.

1.1. Previous work. The study of asymptotic properties of the MLE in HMM

was initiated in the seminal work of Baum and Petrie [3, 28] in the 1960s. In

these papers, the state space X and the observation space Y were both presumed

to be finite sets. More than two decades later, Leroux [23] proved consistency

for the case that X is a finite set and Y is a general state space. The consistency

of the MLE in more general HMM has subsequently been investigated in a

series of contributions [21, 22, 8, 9, 14] using a variety of methods. However,

all these results require very restrictive assumptions on the underlying model,

such as uniform positivity of the transition densities, which are rarely satisfied

in applications (particularly in the case of a non-compact state space X). A

general consistency result for HMM has hitherto remained lacking.

Though the consistency results above differ in the details of their proofs, all

proofs have a common thread which serves also as the starting point for this

paper. Let us therefore recall the basic approach for proving consistency of the

MLE. Denote by pν(yn
0 ; θ) the likelihood of the observations Y n

0 for the HMM

with parameter θ ∈ Θ and initial measure X0 ∼ ν. The first step of the proof
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aims to establish that for any θ ∈ Θ, there is a constant H(θ⋆, θ) such that

lim
n→∞

n−1 log pν(Y n
0 ; θ) = lim

n→∞
n−1Ēθ⋆[log pν(Y n

0 ; θ)] = H(θ⋆, θ) , P̄θ⋆-a.s.

For θ = θ⋆ this convergence follows from the generalized Shannon-Breiman-

McMillan theorem [2], but for θ 6= θ⋆ the existence of the limit is far from

obvious. Now set K(θ⋆, θ) = H(θ⋆, θ⋆) − H(θ⋆, θ). Then K(θ⋆, θ) ≥ 0 is the

relative entropy rate between the observation laws of the parameters θ⋆ and θ,

respectively. The second step of the proof aims to establish identifiability, that

is, that K(θ⋆, θ) is minimized only at those parameters θ that are equivalent

to θ⋆ (in the sense that they give rise to the same stationary observation law).

Finally, the third step of the proof aims to prove that the maximizer of the

likelihood θ 7→ pν(Y n
0 ; θ) converges P̄θ⋆-a.s. to the maximizer of H(θ⋆, θ), that

is, to the minimizer of K(θ⋆, θ). Together, these three steps imply consistency.

Let us note that one could write the likelihood as

n−1 log pν(Y n
0 ; θ) =

1

n

n
∑

k=0

log pν(Yk|Y k−1
0 ; θ) ,

where pν(Yk|Y k−1
0 ; θ) denotes the conditional density of Yk given Y k−1

0 under

the parameter θ (that is, the one-step predictor). If the limit of pν(Y1|Y 0
−n; θ)

as n → ∞ can be shown to exist P̄θ⋆-a.s., existence of the relative entropy

rate follows from the ergodic theorem and yields the explicit representation

H(θ⋆, θ) = Ēθ⋆[log pν(Y1|Y 0
−∞; θ)]. Such an approach was used in [3, 9]. Alter-

natively, the predictive distribution pν(Yk|Y k−1
0 ; θ) can be expressed in terms of

a measure-valued Markov chain (the prediction filter), so that existence of the

relative entropy rate, as well as an explicit representation for H(θ⋆, θ), follows

from the ergodic theorem for Markov chains if the prediction filter can be shown

to be ergodic. This approach was used in [21, 22, 8]. In [23], the existence

of the relative entropy rate is established by means of Kingman’s subadditive

ergodic theorem (the same approach is used indirectly in [28], which invokes the

Furstenberg-Kesten theory of random matrix products). After some additional

work, an explicit representation of H(θ⋆, θ) is again obtained. However, as is

noted in [23, p. 136], the latter is surprisingly difficult, as Kingman’s ergodic

theorem does not directly yield a representation of the limit as an expectation.

Though the proofs use different techniques, all the results above rely heavily

on the explicit representation of H(θ⋆, θ) in order to establish identifiability.

This has proven to be one of the main difficulties in developing consistency

results for more general HMM. For example, an attempt in [14] to generalize

the approach of [23] failed to establish such a representation, and therefore to

establish consistency except in a special example. Once identifiability has been

established, standard techniques (such as Wald’s method) can be used to show

convergence of the maximizer of the likelihood, completing the proof.
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For completeness, we note that a recent attempt [12] to prove consistency of

the MLE for general HMM contains very serious problems in the proof [18] (not

addressed in [13]), and therefore fails to establish the claimed results.

1.2. Approach of this paper. In this paper, we prove consistency of the MLE

for general HMM under rather mild assumptions. Though our proof follows

broadly the general approach described above, our approach differs from previous

work in two key aspects. First, we note that it is not necessary to establish

existence of the relative entropy rate. Indeed, rather than attempting to prove

the existence of a limiting contrast function

lim
n→∞

n−1 log pν(Y n
0 ; θ) = H(θ⋆, θ) , P̄θ⋆-a.s.

which must then shown to be identifiable in the sense that H(θ⋆, θ) < H(θ⋆, θ⋆)

for parameters θ not equivalent to θ⋆, it suffices to show directly that

lim sup
n→∞

n−1 log pν(Y n
0 ; θ) < H(θ⋆, θ⋆) , P̄θ⋆-a.s. (1)

(note that the existence of H(θ⋆, θ⋆) is guaranteed by the Shannon-Breiman-

McMillan theorem, and therefore poses no difficulty in the proof). This sim-

ple observation implies that it suffices to obtain a convenient upper bound for

pν(Y n
0 ; θ), which we accomplish by introducing the assumption that some iterate

Ql
θ of the transition kernel of the state sequence possesses a bounded density

with respect to a σ-finite reference measure λ.

Second, and perhaps more importantly, we avoid entirely the need to obtain an

explicit representation for the limiting contrast function H(θ⋆, θ) which played

a key role in all previous work. Instead, we develop in section 4.2 a surprisingly

powerful information-theoretic device which may be used to prove identifiability

in a very general setting (see [26] for related ideas), and is not specific to HMM.

This technique yields the following: in order to establish that the normalized

relative entropy is bounded away from zero, that is,

lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

pν(Y n
0 ; θ)

]

> 0 , (2)

it suffices to show that there is a sequence of sets (Ak)k≥0 such that

lim inf
n→∞

P̄θ⋆(Y n
0 ∈ An) > 0 , lim sup

n→∞
n−1 log Pν

θ(Y
n
0 ∈ An) < 0

(here Pν
θ is the law of the HMM with parameter θ and initial measure ν, while

p̄(yn
0 ; θ⋆) denotes the likelihood of Y n

0 under P̄θ⋆). It is rather straightforward

to find such a sequence of sets, provided the law of the observations (Yk)k≥0 is

ergodic under P̄θ⋆ and satisfies an elementary large deviations property under Pν
θ .

These properties are readily established in a very general setting. In particular,

we will show (section 5) that any geometrically ergodic state sequence gives

rise to the requisite large deviations property, so that our main result can be
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applied immediately to a large class of models of practical interest. [Let us note,

however, that ergodicity of Pν
θ is not necessary; see section 3.2.]

Of course, there are some complications. In order to connect the P̄θ⋆-a.s.

asymptotics of equation (1) to equation (2), we need to show that

lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

pλ(Y n
0 ; θ)

]

> 0 ,

where λ is the reference measure defined above. As λ is typically only σ-finite,

it is not immediately obvious that the problem is well-posed. Nonetheless, we

will see that these complications can be resolved, provided that the HMM is

sufficiently “observable” so that the improper likelihood pλ(Y n
0 ; θ) is well defined

for sufficiently large n (under mild integrability conditions). As is demonstrated

by the examples in section 3, this is the case in a wide variety of applications.

Finally, we note that the techniques used in the proof of our main result appear

to be quite general. Though we have restricted our attention in this paper to

the case of HMM, these techniques could form the foundation for consistency

proofs in other dependent and non-Markovian time series models, which share

many of the difficulties of statistical inference in HMM.

1.3. Organization of the paper. The remainder of the paper is organized as

follows. In section 2 we first introduce the setting and notations that are used

throughout the paper. Then, we state our main assumptions and results. In sec-

tion 3, our main result is used to establish consistency in three general classes of

models: linear-Gaussian state space models, finite state models, and nonlinear

state space models of the vector ARCH type (this includes the stochastic volatil-

ity model and many other models of interest in time series analysis and financial

econometrics). Section 4 is devoted to the proof of our main result. Finally,

section 5 is devoted to the proof of the fact that geometrically ergodic models

satisfy the large deviations property needed for identifiability. In particular, we

prove in section 5.2 general Azuma-Hoeffding type concentration inequality for

V -uniformly ergodic Markov chains, which is of independent interest.

2. Assumptions and Main results

2.1. Canonical setup and notations. We fix the following spaces throughout:

• X is a Polish space endowed with its Borel σ-field X.

• Y is a Polish space endowed with its Borel σ-field Y.

• Θ is a compact metric space endowed with its Borel σ-field H.

X is the state space of the hidden Markov process, Y is the state space of the

observations, and Θ is the parameter space of our model. We furthermore as-

sume that Θ is endowed with a given equivalence relation1 ∼, and denote the

equivalence class of θ ∈ Θ as [θ]
def
= {θ′ ∈ Θ : θ′ ∼ θ}.

1 This is meant here in the broad sense, that is, ∼ is a binary relation on Θ indicating which

elements θ ∈ Θ should be viewed as “equivalent.” We do not require ∼ to be transitive.
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Our model is defined as follows: we are given a transition kernel Q : Θ×X×
X → [0, 1], a positive σ-finite measure µ on (Y,Y), and a measurable function

g : Θ × X × Y → R+ such that
∫

gθ(x, y)µ(dy) = 1 for all θ, x. For each θ ∈ Θ,

we can define the transition kernel Tθ on (X,Y) as

Tθ [(x, y), C]
def
=

∫ 1C(x′, y′) gθ(x
′, y′)µ(dy′)Qθ(x,dx′)

We will work on the measurable space (Ω,F) where Ω = (X×Y)N, F = (X⊗Y)⊗N,

and the canonical coordinate process is denoted as (Xk, Yk)k≥0. For each θ ∈ Θ

and probability measure ν on (X,X), we define Pν
θ to be the probability measure

on (Ω,F) such that (Xk, Yk)k≥0 is a time homogeneous Markov process with

initial measure Pν
θ((X0, Y0) ∈ C) =

∫ 1C(x, y) gθ(x, y)µ(dy) ν(dx) and transition

kernel Tθ. Denote as Eν
θ the expectation with respect to Pν

θ , and denote as P
ν,Y
θ

the restriction of the probability measure Pν
θ to (YN,Y⊗N).

Throughout the paper, we fix a distinguished element θ⋆ ∈ Θ. We will always

presume that the kernel Qθ⋆ possesses a unique invariant probability measure

πθ⋆ on (X,X) (this follows from assumption (A1) below). For ease of notation,

we will write P̄θ⋆, Ēθ⋆ , P̄Y
θ⋆ instead of P

πθ⋆

θ⋆ , E
πθ⋆

θ⋆ , P
πθ⋆ ,Y
θ⋆ . Though the kernel Qθ

need not be uniquely ergodic for θ 6= θ⋆ in our main result, we will obtain easily

verifiable assumptions in a setting which implies that all Qθ possess a unique

invariant probability measure. When this is the case, we will denote as πθ this

invariant measure and we define P̄θ, Ēθ, P̄
Y
θ as above.

Under the measure Pν
θ , the process (Xk, Yk)k≥0 is a hidden Markov model.

The hidden process (Xk)k≥0 is a Markov chain in its own right with initial

measure ν and transition kernel Qθ, while the observations (Yk)k≥0 are condi-

tionally independent given the hidden process with common observation kernel

Gθ(x,dy) = gθ(x, y)µ(dy). In the setting of this paper, we have access to a sin-

gle observation path of the process (Yk)k≥0 sampled from the distribution P̄θ⋆.

Thus θ⋆ is interpreted as the true parameter value, which is not known a priori.

Our basic problem is to obtain a consistent estimate of θ⋆ (up to equivalence,

that is, we aim to identify the equivalence class [θ⋆] of the true parameter) on

the basis of the observations (Yk)k≥0 only, without access to the hidden process

(Xk)k≥0. This will be accomplished by the maximum likelihood method.

Define for any positive σ-finite measure ρ on (X,X)

pρ(dxt+1, y
t
s; θ)

def
=

∫

ρ(dxs)
t
∏

u=s

gθ(xu, yu)Qθ(xu,dxu+1) ,

pρ(yt
s; θ)

def
=

∫

pρ(dxt+1, y
t
s; θ) ,

with the conventions
∏w

u=v au = 1 if v > w and for any sequence (as)s∈Z and any

integers s ≤ t, at
s

def
= (as, . . . , at). For ease of notation we will write px(yt

s; θ)
def
=

pδx(yt
s; θ) for x ∈ X, and we write p̄(yt

s; θ)
def
= pπθ(yt

s; θ). Note that pρ(dxt+1, y
t
s; θ)
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is a positive but not necessarily σ-finite measure. However, if ρ is a probability

measure, then pρ(dxt+1, y
t
s; θ) is a finite measure and pρ(yt

s; θ) < ∞.

If ν is a probability measure, then pν(yn
0 ; θ) is the likelihood of the observa-

tion sequence yn
0 under the law Pν

θ . The maximum likelihood method forms an

estimate of θ⋆ by maximizing θ 7→ pν(yn
0 ; θ), and we aim to establish consistency

of this estimator. However, as the state space X is not compact, it will turn out

to be essential to consider also pλ(yn
0 ; θ) for a positive σ-finite measure λ.

We conclude this section with some miscellaneous notations. For any function

f , we denote as |f |∞ its supremum norm (e.g., |gθ|∞ def
= sup(x,y)∈X×Y gθ(x, y)).

As we will frequently integrate with respect to the measure µ, we will use the

abridged notation dy instead of µ(dy), and we write dyt
s

def
=
∏t

i=s dyi. For any

integer m and θ ∈ Θ, we denote by Qm
θ the m-th iterate of the kernel Qθ. For

any pair of probability measures P, Q and function V ≥ 1, we define the norm

‖P − Q‖V
def
= sup

f :|f |≤V

∣

∣

∣

∣

∫

f dP −
∫

f dQ

∣

∣

∣

∣

.

Finally, the relative entropy (or Kullback-Leibler divergence) is defined as

KL(P||Q)
def
=

{

∫

log(dP/dQ) dP if P ≪ Q,

∞ otherwise,

for any pair of probability measures P and Q.

Remark 1. Throughout the paper we will encounter partial suprema of mea-

surable functions (for example, yn
0 7→ supθ∈U p̄(yn

0 ; θ) for some measurable set

U ∈ H). As the supremum is taken over an uncountable set, such functions are

not necessarily Borel-measurable. However, as all our state spaces are Polish,

such functions are always guaranteed to be universally measurable [4, Propo-

sition 7.47]. Similarly, a Borel-measurable (approximate) maximum likelihood

estimator need not exist, but the Polish assumption ensures the existence of uni-

versally measurable maximum likelihood estimators [4, Proposition 7.50]. All

probabilities and expectations can therefore be unambiguously extended to such

quantities, which we will implicitly assume to be the case in the sequel.

2.2. The consistency theorem. Our main result establishes consistency of the

MLE under assumptions (A1–6) below, which hold in a large class of models.

Various examples will be treated in section 3 below.

Assumptions (A1–2) are standard.

(A1) The Markov kernel Qθ⋆ is positive Harris recurrent.

(A2) Ēθ⋆[supx∈X (log gθ⋆(x, Y0))
+] < ∞, Ēθ⋆

[∣

∣log
∫

gθ⋆(x, Y0)πθ⋆(dx)
∣

∣

]

< ∞.

Assumption (A3) states that an iterate of the transition kernel Qθ possesses

a density with respect to a σ-finite measure λ. This property will allow us

to establish the asymptotics of the likelihood of Pν
θ in terms of the improper

likelihood pλ(·; θ). The measure λ plays a central role throughout the paper.
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(A3) There is an integer l ≥ 1, a measurable function q : Θ × X × X → R+,

and a σ-finite measure λ on (X,X) such that |qθ|∞ < ∞ and

Ql
θ(x,A) =

∫ 1A(x′) qθ(x, x′)λ(dx′)

for all θ 6∼ θ⋆, x ∈ X, A ∈ X.

Assumptions (A4–5) are similar in spirit to the classical Wald conditions in

the case of i.i.d. observations. However, an important difference with the classical

case is that (A4) applies to pλ(yrθ

0 ; θ), which is not a probability density (as λ is

typically only σ-finite). Assumption (A4) implies in particular that pλ(yrθ

0 ; θ) is

P̄θ⋆-a.s. finite. When λ is σ-finite, this requires, in essence, that the observations

contain some information on the range of values taken by the hidden process.

(A4) For every θ 6∼ θ⋆, there is a neighborhood Uθ of θ such that

sup
θ′∈Uθ

|qθ′ |∞ < ∞ , Ēθ⋆

[

sup
θ′∈Uθ

sup
x∈X

(log gθ′(x, Y0))
+

]

< ∞ ,

and there is an integer rθ such that

Ēθ⋆

[

sup
θ′∈Uθ

(log pλ(Y rθ

0 ; θ′))+
]

< ∞ .

(A5) For any θ 6∼ θ⋆ and n ≥ rθ, the function θ′ 7→ pλ(Y n
0 ; θ′) is upper-

semicontinuous at θ, P̄θ⋆-a.s.

Finally, the key assumption (A6) gives identifiability of the model. In prin-

ciple, what is needed is that P
λ,Y
θ is distinguishable from P̄Y

θ⋆ in a suitable sense.

However, as λ may be σ-finite, P
λ,Y
θ is not well defined. As a replacement, we

will consider the probability measure P̃λ
θ defined by

P̃λ
θ (Y n

0 ∈ A) =

∫ 1A(yn
0 )

pλ(yn
0 ; θ)

pλ(yrθ

0 ; θ)
p̄(yrθ

0 ; θ⋆) dyn
0

for all n ≥ rθ and A ∈ Y⊗(n+1). Lemma 11 shows that P̃λ
θ is well defined,

provided that (A4) holds and pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s. The law P̃λ
θ is in essence a

normalized version of P
λ,Y
θ , and (A6) should be interpreted in this spirit.

Despite that the assumption looks nontrivial, we will obtain sufficient condi-

tions in section 2.3 which are satisfied in a large class of models.

(A6) For every θ 6∼ θ⋆ such that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s., we have

lim inf
n→∞

P̄θ⋆(Y n
0 ∈ An) > 0 , lim sup

n→∞
n−1 log P̃λ

θ (Y n
0 ∈ An) < 0

for some sequence of sets An ∈ Y⊗(n+1).

Having introduced the necessary assumptions, we now turn to the statement

of our main result. Let ℓν,n : θ 7→ log pν(Y n
0 ; θ) be the log-likelihood function

associated with the initial probability measure ν and the observations Y n
0 . An
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approximate maximum likelihood estimator (θ̂ν,n)n≥0 is defined as a sequence of

(universally) measurable functions θ̂ν,n of Y n
0 such that

n−1ℓν,n(θ̂ν,n) ≥ sup
θ∈Θ

n−1ℓν,n(θ) − oa.s.(1) ,

where oa.s.(1) denotes a stochastic process that converges to zero P̄θ⋆-a.s. as n →
∞ (if the supremum of ℓν,n is attained, we may choose θ̂ν,n = argmaxθ∈Θ ℓν,n(θ)).

The main result of the paper consists in obtaining the consistency of θ̂ν,n.

Theorem 1. Assume (A1–6), and let ν be a fixed initial probability measure.

Suppose that one of the following assumptions hold:

(1) ν ∼ πθ⋆; or

(2) gθ⋆(x, y) > 0 for all x, y, and Qθ⋆ is aperiodic; or

(3) gθ⋆(x, y) > 0 for all x, y, and ν has mass in each periodic class of Qθ⋆.

Then θ̂ν,n
n→∞−−−→ [θ⋆], P̄θ⋆-a.s.

The proof of this theorem is given in section 4.

Remark 2. The assumptions (1–3) in Theorem 1 impose different requirements

on the initial measure ν used for the maximum likelihood procedure. When the

true parameter is aperiodic and has nondegenerate observations, consistency

holds for any choice of ν. On the other hand, in the case of degenerate observa-

tions, it is evident that we can not expect consistency to hold in general without

imposing an absolute continuity assumption of the form ν ∼ πθ⋆ . The inter-

mediate case, where the observations are nondegenerate but the signal may be

periodic, is not entirely obvious. An illuminating counterexample, which shows

that the MLE can be inconsistent for a choice of ν that does not satisfy the

requisite assumption in this case, is given in Remark 10 below.

Remark 3. The assumptions of Theorem 1 can be weakened somewhat. For

example, the σ-finite measure λ can be allowed to depend on θ, or one may con-

sider maximum likelihood estimates of the form θ̂n = argmaxθ∈Θ ℓνθ,n(θ) where

the initial measure ν depends on θ. Such generalizations are straightforward and

require only minor adjustments in the proofs. In order not to further complicate

our notations, we leave these modifications to the reader.

2.3. Geometric ergodicity implies identifiability. Most of the assumptions

of Theorem 1 can be verified in a straightforward manner. The exception is the

identifiability assumption (A6), which appears to be nontrivial. Nonetheless,

we will show that this assumption holds in a large class of models: it is already

sufficient (beside a mild technical assumption) that the transition kernel Qθ is

geometrically ergodic, a property that holds in many applications. Moreover,

there is a well-established theory of geometric ergodicity for Markov chains [27]

which provides a powerful set of tools to verify this assumption. Consequently,

our main theorem is directly applicable in many cases of practical interest.
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Remark 4. Before we state a precise result, it is illuminating to understand the

basic idea behind the proof of assumption (A6). Assume that Qθ is ergodic and

that P̄Y
θ 6= P̄Y

θ⋆ . Then there is an s < ∞ and a bounded function h : Ys+1 → R

such that Ēθ[h(Y s
0 )] = 0 and Ēθ⋆ [h(Y s

0 )] = 1. Define

An =

{

yn
1 :

1

n − s

n−s
∑

i=1

h(yi+s
i ) >

1

2

}

for n > s. By the ergodic theorem P̄Y
θ⋆(An) → 1 and P̃λ

θ (An) → 0 as n → ∞.

To prove (A6), one must show that the convergence P̃λ
θ (An) → 0 happens at

an exponential rate, i.e., one must establish a type of large deviations property.

Therefore, the key thing to prove is that geometrically ergodic Markov chains

possess such a large deviations property. This will be done in section 5.

Let us begin by recalling the appropriate notion of geometric ergodicity.

Definition 1. Let Vθ : X → [1,∞) be given. The transition kernel Qθ is called

Vθ-uniformly ergodic if it possesses an invariant probability measure πθ and

‖Qm
θ (x, · ) − πθ‖Vθ

≤ Rθ α−m
θ Vθ(x) for every x ∈ X, m ∈ N,

for some constants Rθ < ∞ and αθ > 1.

For equivalent definitions and extensive discussion see [27, chapter 16]. We

can now formulate a practical sufficient condition for assumption (A6).

(A6′) For every θ 6∼ θ⋆ such that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s., there exists a function

Vθ ≥ 1 such that Qθ is Vθ-uniformly ergodic, P̄Y
θ 6= P̄Y

θ⋆, and

P̄θ⋆

(∫

Vθ(xrθ+1) pλ(dxrθ+1, Y
rθ

0 ; θ) < ∞
)

> 0 . (3)

Note, in particular, that (3) holds if (A4) holds and |Vθ|∞ < ∞ (in this case,

(A6′) implies that the transition kernel Qθ is uniformly ergodic). In the setting

where (A6′) holds, it is most natural to consider the equivalence relation ∼
defined by setting θ ∼ θ′ if and only if P̄Y

θ = P̄Y
θ′ (that is, two parameters are

equivalent precisely when they give rise to the same stationary observation laws).

Theorem 2. Assume (A1), (A4) and (A6′). Then (A6) holds.

The proof of this theorem is given in section 5.1.

A different sufficient condition for assumption (A6), which does not rely

on geometric ergodicity of the underlying model, is the following assumption

(A6′′). We will use this assumption in section 3.2 to show that when X is finite

set, the identifiability assumption holds even for non-ergodic signals.

(A6′′) For every θ 6∼ θ⋆ and initial probability measure ν, we have

lim inf
n→∞

P̄θ⋆(Y n
0 ∈ An) > 0 , lim sup

n→∞
n−1 log Pν

θ(Y
n
0 ∈ An) < 0

for some sequence of sets An ∈ Y⊗(n+1).
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Proposition 3. Assume (A4) and (A6′′). Then (A6) holds.

The proof of this proposition is given in section 5.1.

3. Examples

In this section, we develop three classes of examples. In section 3.1 we consider

linear Gaussian state space models. In section 3.2, we consider the classic case

where the signal state space is a finite set. Finally, in section 3.3, we develop a

general class of nonlinear state space models. In all these examples, we will find

that the assumptions of Theorem 1 are satisfied in a rather general setting.

3.1. Gaussian linear state space models. Gaussian linear state space mod-

els form an important class of HMM. In this setting, let X = Rd and Y = Rp

for some integers d, p, and let Θ be a compact parameter space. The transition

kernel Tθ of the model is specified by the state space dynamics

Xk+1 = AθXk + RθUk , (4)

Yk = BθXk + SθVk , (5)

where {(Uk, Vk)}k≥0 is an i.i.d. sequence of Gaussian vectors with zero mean and

identity covariance matrix. Here Uk is q-dimensional, Vk is p-dimensional, and

the matrices Aθ, Rθ, Bθ, Sθ have the appropriate dimensions.

For each θ ∈ Θ and any integer r ≥ 1, define

Oθ,r
def
=

















Bθ

BθAθ

BθA
2
θ

...

BθA
r−1
θ

















and Cθ,r
def
=
[

Rθ AθRθ . . . Ar−1
θ Rθ

]

.

It is assumed in the sequel that for any θ ∈ Θ, the following hold:

(L1) The pair [Aθ, Bθ] is observable and the pair [Aθ, Rθ] is controllable, that is,

the observability matrix Oθ,d and controllability matrix Cθ,d are full rank.

(L2) The state transition matrix Aθ is discrete-time Hurwitz, that is, its eigen-

values all lie in the open unit disc in C.

(L3) The measurement noise covariance matrix Sθ is full rank.

(L4) The functions θ 7→ Aθ, θ 7→ Rθ, θ 7→ Bθ and θ 7→ Sθ are continuous on Θ.

We show below that the Markov kernel Qθ is ergodic for every θ ∈ Θ. We can

therefore define without ambiguity the equivalence relation ∼ on Θ as follows:

θ ∼ θ′ iff P̄Y
θ = P̄Y

θ′ . We now proceed to verify the assumptions of Theorem 1.

The fact that Aθ is Hurwitz guarantees that the state equation is stable. To-

gether with the controllability assumption, this implies that Qθ is Vθ-uniformly

ergodic with Vθ(x) ≍ |x|2 as |x| → ∞ [15, pp. 929–930]. In particular, Qθ⋆ is

Vθ⋆-uniformly ergodic, which implies (A1).
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By the assumption that Sθ is full rank, and choosing the reference measure

µ to be the Lebesgue measure on Y, we find that gθ(x, y) is a Gaussian density

for each x ∈ X with covariance matrix SθS
T
θ . We therefore have |gθ⋆ |∞ =

(2π)−p/2det−1/2(Sθ⋆ST
θ⋆) < ∞, so that Ēθ⋆ [supx∈X (log gθ⋆(x, Y0))

+] < ∞. On

the other hand, as the stationary distribution πθ is Gaussian, the function y 7→
∫

gθ⋆(x, y)πθ⋆(dx) is a Gaussian density with respect to µ. Therefore, is easily

seen that Ēθ⋆

[∣

∣log
∫

gθ⋆(x, Y0)πθ⋆(dx)
∣

∣

]

< ∞, and we have established (A2).

The dimension q of the state noise vector Uk is in many situations smaller

than the dimension d of the state vector Xk and hence RθR
T
θ may be rank

deficient. However, note that Qd
θ(x,dx′) is a Gaussian distribution with covari-

ance matrix Cθ,dC
T
θ,d for each x ∈ X. Therefore, the controllability of the pair

[Aθ, Rθ] nonetheless guarantees that Qd
θ(x,dx′) has a density with respect to the

Lebesgue measure λ on X. Thus (A3) is satisfied with l = d.

To proceed, we obtain an explicit expression for pλ(yr
0; θ).

Lemma 4. For r ≥ d, we have

pλ(yr−1
0 ; θ) =

(2π)(d−pr)/2det−1/2
(

OT
θ,rΓ

−1
θ,rOθ,r

)

det−1/2 (Γθ,r) exp

(

−1

2
yT

r Hθ,ryr

)

. (6)

Here we defined the matrix Γθ,r
def
= Hθ,rH

T
θ,r + Sθ,rS

T
θ,r with

Hθ,r
def
=

















0 0 . . . 0

BθRθ 0 0

BθAθRθ BθRθ . . . 0
...

...
. . .

...

BθA
r−2
θ Rθ BθA

r−3
θ Rθ . . . BθRθ

















and where Sθ,r is the pr × pr block diagonal matrix with diagonal blocks equal to

Sθ, yr = [y0, . . . , yr−1]
T , and Hθ,r is the matrix defined by

Hθ,r
def
= Γ−1

θ,r − Γ−1
θ,rOθ,r(O

T
θ,rΓ

−1
θ,rOθ,r)

−1OT
θ,rΓ

−1
θ,r .

Proof. Define the vectors Yr = [Y T
0 , . . . , Y T

r−1]
T , Ur−1 = [UT

0 , . . . , UT
r−2]

T , and

Vr = [V T
0 , . . . , V T

r−1]
T . It follows from elementary algebra that

Yr = Oθ,rX0 + Hθ,rUr−1 + Sθ,rVr

for any integer r ≥ 1. Note that, as Ur−1 and Vr are independent, the covariance

matrix of the vector Hθ,rUr−1 + Sθ,rVr is given by Γθ,r. It follows that

px(yr−1
0 ; θ) = (2π)−pr/2det−1/2(Γθ,r) exp

(

−1

2
(yr − Oθ,rx)T Γ−1

θ,r(yr − Oθ,rx)

)

,

where we have used that Γθ,r is positive definite (this follows directly from the

assumption that Sθ is full rank). Now let Π̃θ,r
def
= Õθ,r

(

ÕT
θ,rÕθ,r

)−1
ÕT

θ,r be the
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orthogonal projector on the range of Õθ,r
def
= Γ

−1/2
θ,r Oθ,r (Π̃θ,r is well defined for

r ≥ d as the pair [Aθ, Bθ] is observable, so that Õθ,r is full rank). Clearly

(yr − Oθ,rx)T Γ−1
θ,r(yr − Oθ,rx) =

∥

∥Π̃θ,rΓ
−1/2
θ,r yr − Γ

−1/2
θ,r Oθ,rx

∥

∥

2
+
∥

∥

(

1 − Π̃θ,r

)

Γ
−1/2
θ,r yr

∥

∥

2
.

The result now follows from
∫

exp

(

−1

2

∥

∥Π̃θ,rΓ
−1/2
θ,r yr − Γ

−1/2
θ,r Oθ,rx

∥

∥

2
)

dx = (2π)d/2det−1/2(OT
θ,rΓ

−1
θ,rOθ,r)

(which is immediately seen to be finite due to the fact that Õθ,r has full rank),

and from the identity Hθ,r = Γ
−1/2
θ,r

(

1 − Π̃θ,r

)

Γ
−1/2
θ,r . �

Remark 5. As is evident from the proof, the observability assumption is key in

order to guarantee that pλ(yr−1
0 ; θ) is finite (albeit only for r sufficiently large).

Intuitively, observability guarantees that we can estimate X0 from Y d−1
0 “in

every direction,” so that the likelihood px(yr−1
0 ; θ) becomes small as |x| → ∞.

This is needed in order to ensure that px(yr−1
0 ; θ) is integrable with respect to

the σ-finite measure λ. It should also be noted that for any r ≥ d the matrix

Hθ,r is rank-deficient, showing that (6) is not the density of a finite measure.

Now note that, by our assumptions, the functions θ 7→ det−1/2
(

OT
θ,dΓ

−1
θ,dOθ,d

)

,

θ 7→ det−1/2(Γθ,d), and θ 7→ Hθ,r are continuous on Θ for any r ≥ d. Thus

θ 7→ pλ(yr−1
0 ; θ) is continuous for every r ≥ d, and it is easily established that

Ēθ⋆

[

supθ′∈Uθ
(log pλ(Y rθ

0 ; θ′))+
]

< ∞ if we choose rθ = d − 1 and a sufficiently

small neighborhood Uθ. Moreover, note that |gθ|∞ = (2π)−p/2det−1/2(SθS
T
θ )

and |qθ|∞ = (2π)−d/2det−1/2(Cθ,dC
T
θ,d). Therefore, by the continuity of Sθ and

Cθ,d, we have supθ′∈Uθ
|qθ′ |∞ < ∞ and Ēθ⋆

[

supθ′∈Uθ
supx∈X (log gθ′(x, Y0))

+
]

<

∞ for a sufficiently small neighborhood Uθ. Thus we have verified (A4–5).

It remains to establish assumption (A6). We established above that Qθ is

Vθ-uniformly ergodic with Vθ(x) ≍ |x|2 as |x| → ∞. Moreover, θ 6∼ θ⋆ implies

P̄Y
θ 6= P̄Y

θ⋆ by construction. Therefore, (A6′) would be established if
∫

|x|2 pλ(dxd, Y
d−1
0 ; θ) < ∞ P̄θ⋆-a.s.

But note that
∫

pλ(dxd, Y
d−1
0 ; θ) = pλ(Y d−1

0 ; θ) < ∞ P̄θ⋆-a.s.,

so that pλ(dxd, Y
d−1
0 ; θ) is a finite measure. Moreover, as (Y d−1

0 ,Xd) = MX0+ξ

for a matrix M and a Gaussian vector ξ, it is easily seen that pλ(dxd, Y
d−1
0 ; θ)

must be a random Gaussian measure. As Gaussian measures have finite mo-

ments, we have established (A6′). Therefore (A6) follows from Theorem 2.

Having verified (A1–6), we can apply Theorem 1. As gθ⋆(x, y) > 0 for all

x, y, and as Qθ⋆ is Vθ⋆-uniformly ergodic (hence certainly aperiodic), we find

that the MLE is consistent for any initial measure ν.
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3.2. Finite state models. One of the most widely used classes of HMM is

obtained when the signal is a finite state Markov chain. In this setting, let

X = {1, . . . , d} for some integer d, let Y be any Polish space, and let Θ be a

compact metric space. For each parameter θ ∈ Θ, the signal transition kernel

Qθ is determined by the corresponding transition probability matrix Qθ, while

the observation density gθ is given as in the general setting of this paper.

It is assumed in the sequel that:

(F1) The stochastic matrix Qθ⋆ is irreducible.

(F2) Ēθ⋆[| log gθ⋆(x, Y0)|] < ∞ for every x ∈ X.

(F3) For every θ ∈ Θ, there is a neighborhood Uθ of θ such that

Ēθ⋆

[

sup
θ′∈Uθ

(log gθ′(x, Y0))
+

]

< ∞ for all x ∈ X.

(F4) θ 7→ Qθ and θ 7→ gθ(x, y) are continuous for any x ∈ X, y ∈ Y.

Following [23], we introduce the equivalence relation on Θ as follows: we write

θ ∼ θ′ iff there exist invariant distributions π, π′ for Qθ,Qθ′ , respectively, such

that P
π,Y
θ = P

π′,Y
θ′ . In words, two parameters are equivalent whenever they

give rise to the same stationary observation laws for some choice of invariant

measures for the underlying signal process. The latter statement is not vacuous

as we have not required that Qθ is ergodic for θ 6= θ⋆, that is, there may be

multiple invariant measures for Qθ. The possibility that Qθ is not aperiodic or

even ergodic is the chief complication in this example, as the easily verified V -

uniform ergodicity assumption (A6′) need not hold. We will show nonetheless

that assumption (A6′′) is satisfied, so that Theorem 1 can be applied.

Lemma 5. Let C ⊆ X be an ergodic class of Qθ, and denote by πC the unique

Qθ-invariant measure supported in C. Fix s ≥ 0, and let f : Ys+1 → R be such

that |f |∞ < ∞. Then there exists a constant K such that

Pν
θ

(∣

∣

∣

∣

∣

n
∑

i=1

{

f(Y i+s
i ) − P

πC

θ [f(Y s
0 )]
}

∣

∣

∣

∣

∣

≥ t

)

≤ K exp

[

− t2

Kn

]

for any probability measure ν supported in C and any t > 0, n ≥ 1.

Proof. The proof is identical to that of Theorem 14, provided we replace the

application of Theorem 17 by a trivial modification of the result of [16]. �

Remark 6. As stated, the result of [16] would require that the restriction of

Qθ to C is aperiodic. However, aperiodicity is only used in the proof to ensure

the existence of a solution to the Poisson equation, and it is well known that

the latter holds also in the periodic case. Therefore, a trivial modification of the

proof in [16] allows us to apply the result without additional assumptions.

Lemma 6. In the present setting, assumption (A6′′) holds.
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Proof. Let θ 6∼ θ⋆. We can partition X = E1∪· · ·∪Ep∪T into the p ≤ d ergodic

classes E1, . . . , Ep and the set of transient states T of the stochastic matrix Qθ.

Denote as πi
θ the unique invariant measure of Qθ that is supported in Ei. Then

we can find an integer s ≥ 1 and bounded function h : Ys+1 → R such that

E
πi

θ

θ [h(Y s
0 )] ≤ 0 for all i = 1, . . . , p and such that Ēθ⋆ [h(Y s

0 )] = 1.

Define for n > 2s the set An ∈ Y⊗(n+1) as

An
def
=







yn
0 ∈ Y

n+1 :
1

⌊n/2⌋ − s

n−s
∑

i=⌈n/2⌉+1

h(yi+s
i ) ≥ 1

2







.

As Y ∞
0 is stationary and ergodic under P̄θ⋆ (because Qθ⋆ is irreducible), we have

lim
n→∞

P̄θ⋆(Y n
0 ∈ An) = lim

n→∞
P̄θ⋆





1

⌊n/2⌋ − s

⌊n/2⌋−s
∑

i=1

h(Y i+s
i ) ≥ 1

2



 = 1

by Birkhoff’s ergodic theorem. On the other hand, for any initial probability

measure ν, we can estimate as follows: for some constant K > 0,

Pν
θ(Y

n
0 ∈ An) ≤ Pν

θ(X⌈n/2⌉ ∈ T ) +

max
i=1,...,p

sup
supp µ⊆Ei

P
µ
θ





1

⌊n/2⌋ − s

⌊n/2⌋−s
∑

i=1

h(Y i+s
i ) ≥ 1

2



 ≤ K exp
[

− n

K

]

.

The latter inequality follows from the fact that the population in the transient

states decays exponentially, while we may apply Lemma 5 to obtain an expo-

nential bound for every ergodic class Ei. We therefore find that

lim sup
n→∞

n−1 log Pν
θ(Y

n
0 ∈ An) ≤ − 1

K
< 0,

completing the proof of assumption (A6′′). �

Let us now check the assumptions of Theorem 1. (A1) follows directly from

the assumption that Qθ⋆ is irreducible. To establish (A2), note that

Ēθ⋆

[

sup
x∈X

(log gθ⋆(x, Y0))
+

]

≤
∑

x∈X

Ēθ⋆

[

| log gθ⋆(x, Y0)|
]

< ∞ ,

while we can estimate

Ēθ⋆

[∣

∣

∣

∣

log

∫

gθ⋆(x, Y0)πθ⋆(dx)

∣

∣

∣

∣

]

≤ Ēθ⋆

[

sup
x∈X

(log gθ⋆(x, Y0))
+

]

+ Ēθ⋆

[

sup
x∈X

(log gθ⋆(x, Y0))
−

]

≤
∑

x∈X

Ēθ⋆

[

| log gθ⋆(x, Y0)|
]

< ∞ .

(A3) holds trivially for l = 1 and with λ the counting measure on X (note that

|qθ|∞ ≤ 1 for all θ, as qθ(x, x′) is simply the transition probability from x to x′).

To establish (A4), note that supθ∈Θ |qθ|∞ < ∞, while

Ēθ⋆

[

sup
θ′∈Uθ

sup
x∈X

(log gθ′(x, Y0))
+

]

≤
∑

x∈X

Ēθ⋆

[

sup
θ′∈Uθ

(log gθ′(x, Y0))
+

]

< ∞
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by our assumptions. Moreover, as

Ēθ⋆

[

sup
θ′∈Uθ

(log pλ(Y 0
0 ; θ′))+

]

≤ Ēθ⋆

[

sup
θ′∈Uθ

sup
x∈X

(log d + log gθ′(x, Y0))
+

]

< ∞ ,

we have shown that (A4) holds with rθ = 0 for all θ. Next, we note that the

continuity of θ 7→ Qθ and θ 7→ gθ(x, y) yield immediately that θ 7→ pλ(yn
0 ; θ) is a

continuous function for every n ≥ 0 and yn
0 ∈ Yn+1, establishing (A5). Finally,

Lemma 6 and Proposition 3 establish (A6).

Having verified (A1–6), we can apply Theorem 1. Note that as Qθ⋆ is irre-

ducible, πθ⋆ charges every point of X. Therefore, by Theorem 1, the MLE is

consistent provided that ν charges every point of X (so that ν ∼ πθ⋆).

Remark 7. The result obtained in this section as a special case of Theorem 1 is

almost identical to the result of Leroux [23]. The main difference in [23] is that

there the parameter space Θ may be non-compact, provided the parametrization

of the model vanishes at infinity. This setting reduces directly to the compact

case by compactifying the parameter space Θ, so that this does not constitute

a major generalization from the technical point of view.

However, it should be noted that one can not immediately apply Theorem 1

to the compactified model. The problem is that the new parameters “at infin-

ity” are typically sub-probabilities rather than true probability measures, while

we have assumed in this paper that every parameter θ ∈ Θ corresponds to a

probability measure on the space of observation paths. Theorem 1 can certainly

be generalized to allow for sub-probabilities without significant technical com-

plications. We have chosen to concentrate on the compact setting, however, in

order to keep the notation and results of the paper as clean as possible.

3.3. Nonlinear state space models. In this section, we consider a class of

nonlinear state space models. Let X = Rd, Y = Rℓ, and let Θ be a compact

metric space. For each θ ∈ Θ, the Markov kernel Qθ of the hidden process

(Xk)k≥0 is defined through the nonlinear recursion

Xk = Gθ(Xk−1) + Σθ(Xk−1) ζk .

Here (ζk)k≥1 is an i.i.d. sequence of d-dimensional random vectors which are

assumed to possess a density qζ with respect to the Lebesgue measure λ on Rd,

and Gθ : Rd → Rd, Σθ : Rd → Rd×d are given (measurable) functions. The model

for the hidden chain (Xk)k≥0 is sometimes known as a vector ARCH model, and

covers many models of interest in time series analysis and financial econometrics

(including the AR model, the ARCH model, threshold ARCH, etc.) We let the

reference measure µ be the Lebesgue measure on Rℓ, and define the observed

process (Yk)k≥0 by means of a given observation density gθ(x, y).

For any positive matrix B, denote by λmin(B) its minimal eigenvalue. For

any bounded set A ⊂ Rd×d, define Am
def
= {A1A2 . . . Am : Ai ∈ A, i = 1, . . . ,m}.
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Denote by ρ(A) the joint spectral radius of the set of matrices A, defined as

ρ (A)
def
= lim sup

m→∞

(

sup
A∈Am

‖A‖
)1/m

.

Here ‖ ·‖ is any matrix norm (it is elementary that ρ(A) does not depend on the

choice of the norm). We now introduce the basic assumptions of this section.

(NL1) The random variables ζk have mean zero and identity covariance matrix.

Moreover, qζ(x) > 0 for all x ∈ Rd, and |qζ |∞ < ∞.

(NL2) For each θ ∈ Θ, the function Σθ is bounded on compact sets, Σθ(x) =

o(|x|) as |x| → ∞, and 0 < infθ′∈Uθ
infx∈Rd λmin

[

Σθ′(x)ΣT
θ′(x)

]

for a

sufficiently small neighborhood Uθ of θ.

(NL3) For each θ ∈ Θ, the drift function Gθ has the form

Gθ(x) = Aθ(x)x + hθ(x)

for some measurable functions Aθ : Rd → Rd×d and hθ : Rd → Rd.

Moreover, we assume that Gθ is bounded on compact sets, hθ(x) = o(|x|)
as |x| → ∞, and that there exists Rθ > 0 such that the set of matrices

Aθ
def
= {Aθ(x) : x ∈ Rd, |x| ≥ Rθ} is bounded and ρ(Aθ) < 1.

(NL4) For each θ ∈ Θ, there is a neighborhood Uθ of θ such that

Ēθ⋆

[

sup
θ′∈Uθ

sup
x∈X

(log gθ′(x, Y0))
+

]

+ Ēθ⋆

[

sup
θ′∈Uθ

(

log

∫

gθ′(x, Y0)λ(dx)

)+]

< ∞ .

Moreover, P̄θ⋆

( ∫

|x| gθ(x, Y0)λ(dx) < ∞
)

> 0 for each θ ∈ Θ, and

Ēθ⋆

[∫

(log gθ⋆(x, Y0))
− πθ⋆(dx)

]

< ∞ .

(NL5) The functions θ 7→ gθ(x, y), θ 7→ Gθ(x), θ 7→ Σθ(x), and x 7→ qζ(x) are

continuous on Θ for every x, y. Moreover, for each θ ∈ Θ, the function

θ′ 7→
∫

gθ′(x, Y0)λ(dx) is positive and continuous at θ, P̄θ⋆-a.s.

Remark 8. We have made no attempt at generality here: for sake of example,

we have chosen a set of conditions under which the assumptions of Theorem 1

are easily verified. Of course, the applicability of Theorem 1 extends far beyond

the simple assumptions imposed in this section.

Nonetheless, even the present assumptions already cover a broad class of

nonlinear models. Consider, for example, the stochastic volatility model [17]






Xk+1 = φθXk + σθ ζk ,

Yk = βθ exp(Xk/2) εk ,
(7)

where (ζk, εk) are i.i.d. Gaussian random variables in R2 with zero mean and

identity covariance matrix, βθ > 0, σθ > 0 and |φθ| < 1 for every θ ∈ Θ, and the

functions θ 7→ φθ, θ 7→ σθ, and θ 7→ βθ are continuous. Assumptions (NL1–NL3)

are readily seen to hold. The observation likelihood gθ is given by

gθ(x, y) = (2πβ2
θ )−1/2 exp

[

− exp(−x)y2/2β2
θ − x/2

]

.
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We can compute

sup
x∈X

gθ(x, y) =
1√
2πe

1

|y| ,

∫

gθ(x, y)λ(dx) =
1

|y| .

As the stationary distribution πθ⋆ is Gaussian, it is easily seen that the the law

of Y0 under P̄θ⋆ has a bounded density with respect to the Lebesgue measure µ

on Y. As
∫

(log(1/|y|))+µ(dy) < ∞, the first equation display of (NL4) follows.

To prove that P̄θ⋆

( ∫

|x| gθ(x, Y0)λ(dx) < ∞
)

> 0, it suffices to note that x 7→
gθ(x, y) has exponentially decaying tails for all |y| > 0. The remaining part

of (NL4) follows easily using that πθ⋆ is Gaussian and Ēθ⋆(Y 2
0 ) < ∞. Finally,

(NL5) now follows immediately, and we have verified that the assumptions of

this section hold for the stochastic volatility model. Similar considerations apply

in a variety of nonlinear models commonly used in financial econometrics.

We show below that the Markov kernel Qθ is ergodic for every θ ∈ Θ. We can

therefore define without ambiguity the equivalence relation ∼ on Θ as follows:

θ ∼ θ′ iff P̄Y
θ = P̄Y

θ′ . We now proceed to verify the assumptions of Theorem 1.

It is shown in [24, Theorem 2] that under conditions (NL1–NL3), the Markov

kernel Qθ is V -uniformly ergodic for each θ ∈ Θ with V (x) = 1 + |x|. In

particular, assumption (A1) holds. The first part of (A2) follows directly from

(NL4). To prove the second part, we first note that Qθ has a transition density

qθ(x, x′) = |det [Σθ(x)]|−1 qζ

(

Σ−1
θ (x){x′ − Gθ(x)}

)

with respect to the Lebesgue measure λ on X. This evidently gives |qθ|∞ =

supx∈X |det[Σθ(x)]|−1|qζ |∞ < ∞ by (NL1–NL2), which implies in particular that

πθ⋆ has a bounded density with respect to λ. Therefore

Ēθ⋆

[

(

log

∫

gθ⋆(x, Y0)πθ⋆(dx)

)+
]

≤ |qθ⋆ |∞ Ēθ⋆

[

(

log

∫

gθ⋆(x, Y0)λ(dx)

)+
]

< ∞

by (NL4). On the other hand, as x 7→ (log x)− is convex, we have

Ēθ⋆

[

(

log

∫

gθ⋆(x, Y0)πθ⋆(dx)

)−
]

≤ Ēθ⋆

[∫

(log gθ⋆(x, Y0))
− πθ⋆(dx)

]

< ∞

by Jensen’s inequality and (NL4). Therefore, (A2) is established. We have

already shown that Qθ possesses a bounded density, so (A3) holds with l = 1.

Assumption (A4) with rθ = 0 follows directly from (NL4) and (NL1–NL2).

To establish (A5), let νθ(dx, y)
def
= gθ(x, y)λ(dx)/

∫

gθ(x, y)λ(dx). By (NL5),

νθ(dx, Y0) is a probability measure P̄θ⋆-a.s., and for every θ ∈ Θ the density func-

tion θ′ 7→ gθ′(x, Y0)/
∫

gθ′(x, Y0)λ(dx) is continuous at θ P̄θ⋆-a.s. By Scheffé’s

lemma, this implies that for any θ ∈ Θ, the map θ′ 7→ νθ′(·, Y0) is continuous at θ

P̄θ⋆-a.s. with respect to the total variation norm ‖·‖1. Similarly, as θ 7→ qθ(x, x′)
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is continuous by (NL5), the map θ 7→ Qθ(x,dx′) is continuous with respect to

the total variation norm. Now note that we can write

pλ(Y n
0 ; θ) =

(∫

gθ(x, Y0)λ(dx)

)∫

px′

(Y n
1 ; θ)Qθ(x,dx′) νθ(dx, Y0) .

From (NL4), it follows that x 7→ supθ′∈Uθ
gθ′(x, Yk) is bounded P̄θ⋆-a.s. for every

k. Therefore x 7→ supθ′∈Uθ
px(Y n

1 ; θ′) is a bounded function P̄θ⋆-a.s., and by

dominated convergence the function θ′ 7→ px(Y n
1 ; θ′) is continuous at θ P̄θ⋆-a.s.

for every θ ∈ Θ. Therefore, it follows that P̄θ⋆-a.s.

∣

∣

∣

∣

∫

px′

(Y n
1 ; θn)Qθn

(x,dx′) νθn
(dx, Y0) −

∫

px′

(Y n
1 ; θ)Qθ(x,dx′) νθ(dx, Y0)

∣

∣

∣

∣

≤
∫

|px′

(Y n
1 ; θn) − px′

(Y n
1 ; θ)|Qθ(x,dx′) νθ(dx, Y0)

+ sup
θ′∈Uθ

|p·(Y n
1 ; θ′)|∞‖νθn

(·, Y0)Qθn
− νθ(·, Y0)Qθ‖1

n→∞−−−→ 0

for any sequence (θn)n≥0 ⊂ Uθ, θn → θ. Here we have used the dominated con-

vergence theorem to conclude convergence of the first term, and the continuity

in total variation established above for the second term. (A5) follows.

It remains to establish assumption (A6). We established above that Qθ is

V -uniformly ergodic with V (x) = 1 + |x|. Moreover, θ 6∼ θ⋆ implies P̄Y
θ 6= P̄Y

θ⋆

by construction. Therefore, (A6′) would be established if

P̄θ⋆

(∫

|x′|Qθ(x,dx′) gθ(x, Y0)λ(dx) < ∞
)

> 0.

But as Qθ is V -uniformly ergodic, it follows that QθV ≤ αθV + Kθ for some

positive constants αθ,Kθ [27, Theorem 16.0.1]. Assumption (A6′) therefore

follows from (NL4), and (A6) follows from Theorem 2.

Having verified (A1–6), we can apply Theorem 1. As gθ⋆(x, y) > 0 for all

x, y, and as Qθ⋆ is V -uniformly ergodic (hence certainly aperiodic), we find that

the MLE is consistent for any initial measure ν.

Remark 9. The assumption in (NL4) that

Ēθ⋆

[
∫

(log gθ⋆(x, Y0))
− πθ⋆(dx)

]

< ∞

is used to verify the second part of (A2). This condition can be replaced by the

following assumption: there exists a set D ∈ X such that

(i) Ēθ⋆

[

(

log
∫

D gθ⋆(x, Y0)λ(dx)
)−
]

< ∞, and

(ii) infx,x′∈D qθ⋆(x, x′) > 0.

The latter condition is sometimes easier to check.
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To see that the result still holds under this modified condition, note that

Ēθ⋆

[(

log
∫

gθ⋆(x, Y0)πθ⋆(dx)
)+]

< ∞ follows as above. On the other hand,

∫

gθ⋆(x, Y0)πθ⋆(dx) ≥
∫

D×D
gθ⋆(x′, Y0) qθ⋆(x, x′)πθ⋆(dx)λ(dx′) ≥

πθ⋆(D) inf
x,x′∈D

qθ⋆(x, x′)

∫

D
gθ⋆(x, Y0)λ(dx) .

It follows from (i) that λ(D) > 0, so that πθ⋆(D) > 0 also (as Qθ⋆ , and therefore

πθ⋆, has a positive density with respect to λ). It now follows directly that also

Ēθ⋆

[(

log
∫

gθ⋆(x, Y0)πθ⋆(dx)
)−]

< ∞, and the claim is established.

4. Proof of Theorem 1

The proof of Theorem 1 consists of three parts. First, we prove pointwise con-

vergence of the log-likelihood under the true parameter θ⋆ (section 4.1). Next, we

establish identifiability of every θ 6∼ θ⋆ (section 4.2). Finally, we put everything

together to complete the proof of consistency (section 4.3).

4.1. Pointwise convergence of the normalized log-likelihood under θ⋆.

The goal of this section is to show that our hidden Markov model possesses a

finite entropy rate and that the asymptotic equipartition property holds. We

begin with a simple result, which will be used to reduce to the stationary case.

Lemma 7. Assume (A1). Then (Yk)k≥0 is ergodic under P̄θ⋆. Moreover, if one

of the assumptions (1–3) of Theorem 1 hold, then P
ν,Y
θ⋆ ∼ P̄Y

θ⋆.

Proof. As Qθ⋆ possesses a unique invariant measure by (A1), the kernel Tθ⋆ pos-

sesses a unique invariant measure also. This implies that the process (Xk, Yk)k≥0

is ergodic under the stationary measure P̄θ⋆ (as the latter is trivially an extreme

point of the set of stationary measures). Therefore, (Yk)k≥0 is ergodic also.

If ν ∼ πθ⋆ , then P
ν,Y
θ⋆ ∼ P̄Y

θ⋆ trivially. Otherwise, we argue as follows. Suppose

that Qθ⋆ has period d (this is guaranteed to hold for some d ∈ N by (A1)). Then

we can partition the signal state space as X = C1∪· · ·∪Cd∪F , where C1, . . . , Cd

are the periodic classes and π(F ) = 0 [27, section 5.4.3]. Note that C1, . . . , Cd

are absorbing sets for Qd
θ⋆ where the restriction of Qd

θ⋆ to Ci is positive Harris and

aperiodic with the corresponding invariant probability measure πi
θ⋆. Moreover,

the Harris recurrence assumption guarantees that Px
θ⋆(Xn 6∈ F eventually) = 1

for all x ∈ X. Therefore, νQnd
θ⋆ (F ) ↓ 0 and νQnd

θ⋆ (Ci) ↑ ci
ν as n → ∞. It follows

from the ergodic theorem for aperiodic Harris recurrent Markov chains that

‖νQn
θ⋆ − πν

θ⋆Qn
θ⋆‖1

n→∞−−−→ 0, πν
θ⋆

def
=

d
∑

i=1

ci
νπi

θ⋆ .

Using gθ⋆(x, y) > 0 and [31, Lemma 3.7], this implies that P
ν,Y
θ⋆ ∼ P

πν
θ⋆ ,Y

θ⋆ . But if

ν has mass in each periodic class Ci or if d = 1, then ci
ν > 0 for all i = 1, . . . , d.

Thus πν
θ⋆ ∼ π = 1

d

∑d
i=1 πi

θ⋆ which implies P̄Y
θ⋆ ∼ P

πν
θ⋆ ,Y

θ⋆ ∼ P
ν,Y
θ⋆ . �
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We will also need the following lemma.

Lemma 8. Assume (A2). Then Ēθ⋆ [| log p̄(Y n
0 ; θ⋆)|] < ∞ for all n ≥ 0.

Proof. We easily obtain the upper bound

Ēθ⋆ [(log p̄(Y n
0 ; θ⋆))+] ≤ Ēθ⋆

[

n
∑

k=0

sup
x∈X

(log gθ⋆(x, Yk))
+

]

< ∞

On the other hand, we can estimate

Ēθ⋆ [log p̄(Y n
0 ; θ⋆)] =

Ēθ⋆

[

log
p̄(Y n

0 ; θ⋆)
∏n

k=0

∫

gθ⋆(x, Yk)πθ⋆(dx)

]

+ Ēθ⋆

[

n
∑

k=0

log

∫

gθ⋆(x, Yk)πθ⋆(dx)

]

≥ −(n + 1) Ēθ⋆

[∣

∣

∣

∣

log

∫

gθ⋆(x, Y0)πθ⋆(dx)

∣

∣

∣

∣

]

> −∞,

where we have used that relative entropy is nonnegative. �

The main result of this section follows. After a reduction to the stationary

case by means of the previous lemma, the proof concludes by verifying the

assumptions of the generalized Shannon-Breiman-McMillan theorem [2].

Theorem 9. Assume (A1–2). There exists −∞ < ℓ(θ⋆) < ∞ such that

ℓ(θ⋆) = lim
n→∞

Ēθ⋆

[

n−1 log p̄(Y n
0 ; θ⋆)

]

, (8)

and such that

ℓ(θ⋆) = lim
n→∞

n−1 log pν(Y n
0 ; θ⋆) , P̄θ⋆-a.s. (9)

for any probability measure ν such that one of the assumptions (1–3) of Theorem

1 is satisfied (in particular, the result holds for ν = πθ⋆).

Proof. Note that Dn
def
= Ēθ⋆

[

log p̄(Y n+1
0 ; θ⋆)

]

− Ēθ⋆ [log p̄(Y n
0 ; θ⋆)] is a nonde-

creasing sequence by [2, p. 1292] and Lemma 8. Therefore (8) follows immedi-

ately. As Y ∞
0 is stationary and ergodic under P̄θ⋆ by (A1), we can estimate

−∞ < D0 ≤ sup
n≥0

Dn = ℓ(θ⋆) = lim
n→∞

Ēθ⋆

[

n−1 log p̄(Y n
0 ; θ⋆)

]

≤ lim
n→∞

1

n

n
∑

k=0

sup
x∈X

(log gθ⋆(x, Yk))
+ = Ēθ⋆

[

sup
x∈X

(log gθ⋆(x, Y0))
+

]

< ∞ ,

using (A2) and Birkhoff’s ergodic theorem. Next, we note that the generalized

Shannon-Breiman-McMillan theorem [2, Theorem 1] implies that (9) holds for

ν = πθ⋆ . Therefore, to prove (9) for arbitrary ν, it suffices to prove the existence

of a random variable Cν satisfying P̄θ⋆(0 < Cν < ∞) = 1 and

lim
n→∞

pν(Y n
0 ; θ⋆)

p̄(Y n
0 ; θ⋆)

= Cν , P̄θ⋆-a.s. (10)
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Let P ν
n

def
= Pν

θ⋆(Y n
0 ∈ · ) and P̄n

def
= P̄θ⋆(Y n

0 ∈ · ). Then pν(Y n
0 ; θ⋆)/p̄(Y n

0 ; θ⋆) =

dP ν
n/dP̄n, and we find that (10) holds with 0 < Cν = dP

ν,Y
θ⋆ /dP̄Y

θ⋆ < ∞ provided

P
ν,Y
θ⋆ ∼ P̄Y

θ⋆. But the latter was already established in Lemma 7. �

Remark 10. In the case that gθ⋆(x, y) > 0 but Qθ⋆ is periodic, the assumption

in the above theorem that the initial probability measure ν has mass in each

periodic class of Qθ⋆ can not be eliminated, as the following example shows. Let

X = Y = {1, 2}, and let Qθ be the Markov chain with transition probability

matrix Q and invariant measure π (independent of θ)

Q =

(

0 1

1 0

)

, π =

(

1/2

1/2

)

.

Then Qθ is positive (Harris) recurrent with period 2. For each θ ∈ Θ = [0.5, 0.9],

define the observation density gθ(x, y) (with respect to the counting measure)

gθ(x, y) = θ 1y=x + (1 − θ)1y 6=x ,

and let θ⋆ = 0.7, for example. Then certainly assumptions (A1–2) are satisfied.

Now consider ν = δ1. Then ν only has mass in one of the two periodic classes

of Qθ⋆ . We can compute the observation likelihood as follows:

log pν(Y 2n
0 ; θ) =

n
∑

k=0

{1Y2k=1 log θ + 1Y2k=2 log(1 − θ)
}

+

n
∑

k=1

{1Y2k−1=2 log θ + 1Y2k−1=1 log(1 − θ)
}

.

A straightforward computation shows that

lim
n→∞

(2n)−1 log pν(Y 2n
0 ; θ) =

{

θ⋆ log θ + (1 − θ⋆) log(1 − θ)
}1X0=1

+
{

(1 − θ⋆) log θ + θ⋆ log(1 − θ)
}1X0=2 P̄θ⋆-a.s.

Therefore limn→∞ n−1 log pν(Y n
0 ; θ⋆) is not even nonrandom P̄θ⋆-a.s., let alone

equal to ℓ(θ⋆). Thus we see that Theorem 9 does not hold for such ν. Moreover,

we can compute directly in this example that

lim
n→∞

θ̂ν,n = θ⋆ 1X0=1 + 0.5 1X0=2 P̄θ⋆-a.s. ,

so that evidently the maximum likelihood estimator is not consistent when we

choose the initial measure ν. This shows that also in Theorem 1 the assumption

that ν has mass in each periodic class of Qθ⋆ can not be eliminated.

4.2. Identifiability. In this section, we establish the identifiability of the pa-

rameter θ. The key issue in the proof consists in showing that the relative

entropy rate between p̄(·; θ⋆) and pλ(·; θ) may be zero only if θ⋆ ∼ θ. Our proof

is based on a very simple and intuitive information-theoretic device, given as

Lemma 10 below, which avoids the need for an explicit representation of the

asymptotic contrast function as in previous proofs of identifiability.
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Definition 2. For each n, let Pn and Qn be probability measures on a measurable

space (Zn,Zn). Then (Qn) is exponentially separated from (Pn), denoted as

(Qn) ⊣ (Pn), if there exists a sequence (An) of sets An ∈ Zn such that

lim inf
n→∞

Pn(An) > 0 , lim sup
n→∞

n−1 log Qn(An) < 0 .

If P and Q are probability measures on (YN,Y⊗N), then we will write Q ⊣ P if

(Qn) ⊣ (Pn) with Qn = Q(Y n
0 ∈ · ) and Pn = P(Y n

0 ∈ · ).

Lemma 10. If (Qn) ⊣ (Pn), then lim infn→∞ n−1KL(Pn||Qn) > 0.

Proof. A standard property of the relative entropy [10, Lemma 1.4.3(g)] states

that for any pair of probability measures P, Q and measurable set A

KL(P||Q) ≥ P(A) log P(A) − P(A) log Q(A) − 1,

where 0 log 0 = 0 by convention. As x log x ≥ −e−1, we have

lim inf
n→∞

n−1KL(Pn||Qn) ≥
(

lim inf
n→∞

P(An)
)(

− lim sup
n→∞

n−1 log Q(An)
)

.

The result follows directly. �

As a consequence of this result, we obtain positive entropy rates:

P
ν,Y
θ ⊣ P̄Y

θ⋆ =⇒ lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

pν(Y n
0 ; θ)

]

> 0 . (11)

This yields identifiability of the asymptotic contrast function in a very simple

and natural manner. It turns out that the exponential separation assumption

P
ν,Y
θ ⊣ P̄Y

θ⋆ always holds when the Markov chain Pν
θ is V -uniformly ergodic and

ν(V ) < ∞; this is proved in section 5 below. This observation allows us to

establish the consistency of the MLE in a large class of models.

There is an additional complication that arises in our proof of consistency.

Rather than (11), the following result turns out to be of crucial importance:

lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

pλ(Y n
0 ; θ)

]

> 0 .

This result seems almost identical to (11). However, note that the probability

measure ν is replaced here by λ, the dominating measure on (X,X), which may

only be σ-finite (λ(X) = ∞). In this case, a direct application of Lemma 10 is

not possible since yn
0 7→ pλ(yn

0 ; θ) is not a probability density:
∫

pλ(yn
0 ; θ) dyn

0 = λ(X) = ∞ .

Nevertheless, the following lemma allows us to reduce the proof in the case of

an improper initial measure λ to an application of Lemma 10.

Lemma 11. Assume (A4). For θ 6∼ θ⋆ such that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s., there

exists a probability measure P̃λ
θ on (YN,Y⊗N) such that

P̃λ
θ (Y n

0 ∈ A) =

∫ 1A(yn
0 )

pλ(yn
0 ; θ)

pλ(yrθ

0 ; θ)
p̄(yrθ

0 ; θ⋆) dyn
0
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for all n ≥ rθ and A ∈ Y⊗(n+1).

Proof. As
∫

pλ(yn
0 ; θ) dyn

rθ+1 = pλ(yrθ

0 ; θ) < ∞ P̄θ⋆-a.e. for all n ≥ rθ by Fubini’s

theorem and assumption (A4), we can define for n ≥ rθ

p̃λ(yn
0 , θ)

def
= pλ(yn

0 ; θ)
p̄(yrθ

0 ; θ⋆)

pλ(yrθ

0 ; θ)
< ∞ dyn

0 -a.e. (12)

Note that, by construction, {p̃λ(yn
0 , θ) dyn

0 : n ≥ rθ} is a consistent family of

probability measures. By the extension theorem, we may construct a probability

measure P̃λ
θ on (YN,Y⊗N) such that P̃λ

θ (Y n
0 ∈ A) =

∫ 1A(yn
0 ) p̃λ(yn

0 , θ) dyn
0 . �

Theorem 12. Assume (A2), (A4), and (A6). Then for every θ 6∼ θ⋆

lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

pλ(Y n
0 ; θ)

]

> 0 . (13)

Proof. Fix θ 6∼ θ⋆. Let us assume first that P̄θ⋆(pλ(Y rθ

0 ; θ) = 0) > 0. As we have
∫

pλ(yn
0 ; θ) dyn

rθ+1 = pλ(yrθ

0 ; θ) by Fubini’s theorem, it must be the case that

P̄θ⋆(pλ(Y n
0 ; θ) = 0) > 0 for all n ≥ rθ, so that the expression in (13) is clearly

equal to +∞. Therefore, in this case, the claim holds trivially.

We may therefore assume that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s.. Let p̃λ(yn
0 , θ) be as in

the proof of Lemma 11. Note that Ēθ⋆[| log p̄(Y rθ

0 ; θ⋆)|] < ∞ by Lemma 8, while

Ēθ⋆[(log pλ(Y rθ

0 ; θ))+] < ∞ by assumption (A4). Then we find

lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

p̃λ(Y n
0 ; θ)

]

≤ lim inf
n→∞

Ēθ⋆

[

n−1 log
p̄(Y n

0 ; θ⋆)

pλ(Y n
0 ; θ)

]

.

Assumption (A6) gives P̃λ
θ ⊣ P̄Y

θ⋆. Therefore, (13) follows from Lemma 10. �

4.3. Consistency of the MLE. Proofs of convergence of the MLE typically re-

quire to establish the convergence of the normalized likelihood n−1 log pν(Y n
0 ; θ)

P̄θ⋆-a.s. for any parameter θ. The existence of a limit follows from the Shannon-

Breiman-McMillan theorem when θ = θ⋆ (as in Theorem 9), but is far from

clear for other θ. In [23], the convergence of n−1 log pν(Y n
0 ; θ) is established us-

ing Kingman’s subadditive ergodic theorem. This approach fails in the present

setting, as log pν(Y n
0 ; θ) may not be subadditive even up to a constant.

The approach adopted here is inspired by [23]. We note, however, that it is not

necessary to prove convergence of n−1 log pν(Y n
0 ; θ) as long as it is asymptotically

bounded away from ℓ(θ⋆), the likelihood of the true parameter. It therefore suf-

fices to bound n−1 log pν(Y n
0 ; θ) above by an auxiliary sequence that is bounded

away from ℓ(θ⋆). Here the asymptotics of n−1 log pλ(Y n
0 ; θ) come into play.
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Lemma 13. Assume (A1–6). Then, for any θ 6∼ θ⋆, there exists an integer nθ

and ηθ > 0 such that B(θ, ηθ) ⊆ Uθ and

1

nθ + l
Ēθ⋆

[

sup
θ′∈B(θ,ηθ)

log pλ(Y nθ

0 ; θ′)

]

+
1

nθ + l
sup

θ′∈B(θ,ηθ)
log |qθ′ |∞

+
l − 1

nθ + l
Ēθ⋆

[

sup
θ′∈B(θ,ηθ)

sup
x∈X

(log gθ′(x, Y0))
+

]

< ℓ(θ⋆) .

Here B(θ, η) ⊆ Θ is the ball of radius η > 0 centered at θ ∈ Θ.

Proof. By (8) and Theorem 12, lim supn n−1Ēθ⋆

[

log pλ(Y n
0 ; θ)

]

< ℓ(θ⋆). Using

(A4), this implies that there exists a (nonrandom) integer nθ > rθ such that

1

nθ + l
Ēθ⋆

[

log pλ(Y nθ

0 ; θ)
]

+
1

nθ + l
sup

θ′∈Uθ

log |qθ′ |∞

+
l − 1

nθ + l
Ēθ⋆

[

sup
θ′∈Uθ

sup
x∈X

(log gθ′(x, Y0))
+

]

< ℓ(θ⋆) . (14)

For any η > 0 such that B(θ, η) ⊆ Uθ, we have

sup
θ′∈B(θ,η)

log pλ(Y nθ

0 ; θ′)

≤ sup
θ′∈Uθ

(log pλ(Y rθ

0 ; θ′))+ +

nθ
∑

k=rθ+1

sup
θ′∈Uθ

sup
x∈X

(log gθ′(x, Yk))
+ ,

where the right hand side does not depend on η and is integrable. But then

lim sup
η↓0

Ēθ⋆

[

sup
θ′∈B(θ,η)

log pλ(Y nθ

0 ; θ′)

]

≤ Ēθ⋆

[

lim sup
η↓0

sup
θ′∈B(θ,η)

log pλ(Y nθ

0 ; θ′)

]

≤ Ēθ⋆

[

log pλ(Y nθ

0 ; θ)
]

, (15)

by (A5) and Fatou’s lemma. Together (15) and (14) complete the proof. �

Proof of Theorem 1. Since, by Theorem 9, limn→∞ n−1ℓν,n(θ⋆) = ℓ(θ⋆), P̄θ⋆-a.s.,

it is sufficient to prove that for any closed set C ⊂ Θ such that C ∩ [θ⋆] = ∅

lim sup
n→∞

sup
θ′∈C

n−1ℓν,n(θ′) < ℓ(θ⋆) , P̄θ⋆-a.s.

Now note that {B(θ, ηθ) : θ ∈ C} is a cover of C, where ηθ are defined in Lemma

13. As Θ is compact, C is also compact and thus admits a finite subcover

{B(θi, ηθi
) : θi ∈ C, i = 1, . . . , N}. It therefore suffices to show that

lim sup
n→∞

sup
θ′∈B(θ,ηθ)∩C

n−1ℓν,n(θ′) < ℓ(θ⋆) , P̄θ⋆-a.s.

for any θ 6∼ θ⋆. Fix θ 6∼ θ⋆ and let ηθ and nθ be as in Lemma 13. Note that

pν(yn
0 ; θ′) ≤ pν(ym

0 ; θ′) pλ(yn
m+l; θ

′) g∗θ′(y
m+l−1
m+1 ) |qθ′ |∞ ,

pλ(yn
0 ; θ′) ≤ pλ(ym

0 ; θ′) pλ(yn
m+l; θ

′) g∗θ′(y
m+l−1
m+1 ) |qθ′ |∞ ,
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for any m + l ≤ n and θ′ 6∼ θ⋆, where g∗θ(y
j
i )

def
=
∏j

ℓ=i supx∈X gθ(x, yℓ). We can

therefore estimate, for all n sufficiently large,

ℓν,n(θ′) ≤ 1

nθ + l

nθ+l
∑

r=1

{

ℓν,r−1(θ
′) + log pλ(Y n

l+r−1; θ
′) + log

(

g∗θ′(Y
l+r−2
r ) |qθ′ |∞

)

}

≤ 1

nθ + l

nθ+l
∑

r=1

i(n)−1
∑

k=1

{

log pλ
(

Y
(nθ+l)k+r−1
(nθ+l)(k−1)+l+r−1; θ

′
)

+ log |qθ′ |∞
}

+
1

nθ + l

nθ+l
∑

r=1

i(n)−1
∑

k=1

log g∗θ′
(

Y
(nθ+l)(k−1)+l+r−2
(nθ+l)(k−1)+r

)

+
1

nθ + l

nθ+l
∑

r=1

log
(

g∗θ′(Y
r−1
0 ) g∗θ′

(

Y n
(nθ+l)(i(n)−1)+r

))

≤ 1

nθ + l

(nθ+l)(i(n)−1)
∑

r=1

{

log pλ
(

Y nθ+l+r−1
l+r−1 ; θ′

)

+

l−2
∑

k=0

sup
x∈X

(log gθ′(x, Yk+r))
+

}

+ (i(n) − 1) log |qθ′ |∞ +
1

nθ + l

nθ+l
∑

r=1

log g∗θ′(Y
r−1
0 )

+
n
∑

k=1

sup
x∈X

(log gθ′(x, Yk))
+ −

n−2(nθ+l)
∑

k=1

sup
x∈X

(log gθ′(x, Yk))+ ,

where i(n) is the largest integer m such that m(nθ + l) ≤ n. Thus we have

lim sup
n→∞

sup
θ′∈B(θ,ηθ)∩C

n−1ℓν,n(θ′) ≤ 1

nθ + l
Ēθ⋆

[

sup
θ′∈B(θ,ηθ)

log pλ(Y nθ

0 ; θ′)

]

+
l − 1

nθ + l
Ēθ⋆

[

sup
θ′∈B(θ,ηθ)

sup
x∈X

(log gθ′(x, Y0))
+

]

+
1

nθ + l
sup

θ′∈B(θ,ηθ)
log |qθ′ |∞

< ℓ(θ⋆)

by (A4), Birkhoff’s ergodic theorem, and Lemma 13. �

5. Exponential separation and V -uniform ergodicity

As is explained in Remark 4, the key step in establishing assumption (A6) is

to obtain a type of large deviations property. The following Azuma-Hoeffding

type inequality provides what is needed in the V -uniformly ergodic case.

Theorem 14. Assume that Qθ is Vθ-uniformly ergodic. Fix s ≥ 0, and let

f : Ys+1 → R be such that |f |∞ < ∞. Then there exists a constant K such that

Pν
θ

(∣

∣

∣

∣

∣

n
∑

i=1

{

f(Y i+s
i ) − Ēθ[f(Y s

0 )]
}

∣

∣

∣

∣

∣

≥ t

)

≤ K ν(V ) exp

[

− 1

K

(

t2

n
∧ t

)]

for any probability measure ν and any t > 0.

We will first use this result in section 5.1 to prove Theorem 2. In section

5.2 we will establish a general Azuma-Hoeffding type large deviations inequality
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for V -uniformly ergodic Markov chains, which forms the basis for the proof of

Theorem 14. Finally, section 5.3 completes the proof of Theorem 14.

5.1. Proof of Theorem 2. We begin by proving that exponential separation

holds under the V -uniform ergodicity assumption.

Proposition 15. Assume (A1) and (A6′). For any θ 6∼ θ⋆ with pλ(Y rθ

0 ; θ) > 0

P̄θ⋆-a.s. and probability measure ν such that ν(Vθ) < ∞, we have P
ν,Y
θ ⊣ P̄Y

θ⋆.

Proof. Fix θ 6∼ θ⋆. As P̄Y
θ 6= P̄Y

θ⋆ by assumption (A6′), there exists an integer

s ≥ 0 and a bounded measurable function h : Ys+1 → R such that Ēθ [h(Y s
0 )] = 0

and Ēθ⋆ [h(Y s
0 )] = 1. Define for n ≥ s the set An ∈ Y⊗(n+1) as

An
def
=

{

yn
0 ∈ Y

n+1 :

∣

∣

∣

∣

∣

1

n − s

n−s
∑

i=1

h(yi+s
i )

∣

∣

∣

∣

∣

≥ 1

2

}

.

As Y ∞
0 is stationary and ergodic under P̄θ⋆ by (A1), Birkhoff’s ergodic theorem

gives P̄Y
θ⋆(An) → 1 as n → ∞. On the other hand, Theorem 14 shows that

lim supn→∞ n−1 log P
ν,Y
θ (An) < 0. Thus we have established P

ν,Y
θ ⊣ P̄Y

θ⋆. �

Proposition 15 is not sufficient to establish (A6), however: the problem is

that we are interested in the case where ν is not a probability measure, but the

σ-finite measure λ. What remains is to reduce this problem to an application of

Proposition 15. To this end, we will use the following lemma.

Lemma 16. Assume (A4), and fix θ 6∼ θ⋆ such that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s. For

any B ∈ Y⊗(rθ+1) such that P̄θ⋆(Y rθ

0 ∈ B) > 0, define the probability measure

λB,θ(A) = Ēθ⋆

(∫ 1A(xrθ+1)
pλ(dxrθ+1, Y

rθ

0 ; θ)

pλ(Y rθ

0 ; θ)

∣

∣

∣

∣

Y rθ

0 ∈ B

)

on (X,X). Then we have

P̃λ
θ (Y rθ

0 ∈ B, Y n
rθ+1 ∈ A) = P̄θ⋆(Y rθ

0 ∈ B) P
λB,θ

θ (Y n−rθ−1
0 ∈ A)

for any set A ∈ Y⊗(n−rθ).

Proof. Note that by assumption (A4), P̃λ
θ is well defined (as shown in Lemma 11)

and 0 < pλ(Y rθ

0 ; θ) < ∞ P̄θ⋆-a.s. Moreover, as pλ(yrθ

0 ; θ) =
∫

pλ(dxrθ+1, y
rθ

0 ; θ),

we find that λB,θ is indeed a probability measure on (X,X).

Let B ∈ Y⊗(rθ+1) be such that P̄θ⋆(Y rθ

0 ∈ B) > 0. Then for any n > rθ

P̃λ
θ (Y rθ

0 ∈ B, Y n
rθ+1 ∈ A) =

∫ 1A(yn
rθ+1)1B(yrθ

0 ) pλ(yn
0 ; θ)

p̄(yrθ

0 ; θ⋆)

pλ(yrθ

0 ; θ)
dyn

0

= P̄θ⋆(Y rθ

0 ∈ B)

∫

[

∫ 1A(yn
rθ+1) pxrθ+1(yn

rθ+1; θ) dyn
rθ+1

]

λB,θ(dxrθ+1)

= P̄θ⋆(Y rθ

0 ∈ B) P
λB,θ

θ (Y n−rθ−1
0 ∈ A) ,

where we used pλ(yn
0 ; θ) =

∫

pλ(dxm+1, y
m
0 ; θ) pxm+1(yn

m+1; θ) for n > m. �

We can now complete the proof of Theorem 2.
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Proof of Theorem 2. Fix θ 6∼ θ⋆ such that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s., and define

B =

{

yrθ

0 :

∫

Vθ(xrθ+1)
pλ(dxrθ+1, y

rθ

0 ; θ)

pλ(yrθ

0 ; θ)
≤ K

}

.

By (A6′), we can choose K sufficiently large so that P̄θ⋆(Y rθ

0 ∈ B) > 0. Conse-

quently λB,θ(Vθ) ≤ K < ∞ by construction. As in the proof of Proposition 15,

it follows that there exists a sequence of sets An ∈ Y⊗(n−rθ) such that

lim
n→∞

P̄θ⋆(Y n−rθ−1
0 ∈ An) = 1, lim sup

n→∞
n−1 log P

λB,θ

θ (Y n−rθ−1
0 ∈ An) < 0 .

Define the sets

Ãn
def
=
{

yn
0 : yrθ

0 ∈ B, yn
rθ+1 ∈ An

}

.

Using the stationarity of P̄θ⋆ and Lemma 16, it follows that

lim
n→∞

P̄θ⋆(Y n
0 ∈ Ãn) = P̄θ⋆(Y rθ

0 ∈ B) > 0 , lim sup
n→∞

n−1 log P̃λ
θ (Y n

0 ∈ Ãn) < 0 .

This establishes (A6). �

Finally, let us prove Proposition 3.

Proof of Proposition 3. Fix θ 6∼ θ⋆ such that pλ(Y rθ

0 ; θ) > 0 P̄θ⋆-a.s., and let

B = Yrθ+1. By (A6′′), there exists a sequence of sets An ∈ Y⊗(n−rθ) such that

lim inf
n→∞

P̄θ⋆(Y n−rθ−1
0 ∈ An) > 0, lim sup

n→∞
n−1 log P

λB,θ

θ (Y n−rθ−1
0 ∈ An) < 0 .

(A6) now follows easily from the stationarity of P̄θ⋆ and Lemma 16. �

5.2. An Azuma-Hoeffding inequality. This section is somewhat indepen-

dent of the remainder of the paper. We will prove a general Azuma-Hoeffding

type large deviations inequality for V -uniformly ergodic Markov chains, on which

the proof of Theorem 14 will be based (see section 5.3). The following result

may be seen as an extension of the Azuma-Hoeffding inequality obtained in [16]

for uniformly ergodic Markov chains, and the proof of our result is similar to

the proof of the Bernstein-type inequality in [1, Theorem 6].

Theorem 17. Let (Xk)k≥0 be a Markov chain in (X,X) with transition kernel

Q and initial measure η under the probability measure Pη. Assume that the

transition kernel Q is V -uniformly ergodic, and denote by π its unique invariant

measure. Then there exists a constant K such that

Pη

(∣

∣

∣

∣

∣

n
∑

i=1

{f(Xi) − π(f)}
∣

∣

∣

∣

∣

≥ t

)

≤ K η(V ) exp

[

− 1

K

(

t2

n|f |2∞
∧ t

|f |∞

)]

for any probability measure η, bounded function f : X → R, and t > 0.

Remark 11. The exponential bound of Theorem 17 has a Bernstein-type tail,

unlike the usual Azuma-Hoeffding bound. However, unlike the Bernstein in-

equality, the tail behavior is determined only by |f |∞, and not by the variance

of f . We therefore still refer to this inequality as an Azuma-Hoeffding bound. It

is shown in [1] by means of a counterexample that V -uniformly ergodic Markov
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chains do not admit, in general, a Bernstein bound of the type available for

independent random variables (the bound in [1] depends on the variance at the

cost of an extra logarithmic factor, which precludes its use for our purposes).

Throughout this section, we let (Xk)k≥0 be as in Theorem 17. For simplicity,

we work with a generic constant K which may change from line to line.

Before we turn to the proof of Theorem 17, let us recall some standard facts

from the theory of V -uniformly ergodic Markov chains. It is well known [27,

chapter 16] that V -uniform ergodicity in the sense of Definition 1 implies (and

is essentially equivalent to) the following properties:

Minorization condition: There exist a set C ∈ X, an integer m, a prob-

ability measure ν on (X,X) and a constant ε > 0 such that

Qm(x,A) ≥ ε ν(A) for all x ∈ C and all A ∈ X . (16)

Foster-Lyapunov drift condition: There exists a measurable function

V : X 7→ [1,∞), λ ∈ [0, 1), and b < ∞, such that supx∈C V (x) < ∞ and

QV (x) ≤ λV (x) + b1C(x) for all x ∈ X . (17)

The set C in the minorization condition is referred to as a (ν,m)-small set

(see [27] for extensive discussion). For future reference, let us note that

1 ≤ π(V ) = (1 − λ)−1π(QV − λV ) ≤ (1 − λ)−1b π(C) < ∞ ,

which shows that π(V ) < ∞ and π(C) > 0. Moreover,

ε π(C) ν(V ) ≤ π(QmV ) = π(V ) < ∞ ,

so that necessarily ν(V ) < ∞ also.

The proof of Theorem 17 is based on an embedding of the Markov chain into

a wide sense regenerative process [20, p. 360], known as a splitting construction.

Let us recall how this can be done. We will employ the canonical process X̌n
def
=

(X̃n, dn) on the enlarged measure space (Ω̌, F̌), where Ω̌ = (X × {0, 1})N and F̌

is the corresponding Borel σ-field. In words, X̃n takes values in (X,X) and dn is

a binary random variable. Define the following stopping times:

σ0
def
= inf{n ≥ 0 : X̃n ∈ C}, σi+1

def
= inf{n ≥ σi + m : X̃n ∈ C}.

We now construct a probability measure P̌η on (Ω̌, F̌) with the following prop-

erties (for example, by means of the Ionescu-Tulcea theorem).

(dn)n≥0 are i.i.d. with P̌η(dn = 1) = ε ,

X̃0 is independent from (dn)n≥0, and P̌η(X̃0 ∈ · ) = η ,P̌η(X̃n+1 ∈ · |X̃n
0 , d∞0 ) = Q(X̃n, · ) on {n < σ0} ∪

⋃

i≥0

{σi + m ≤ n < σi+1} ,P̌η(X̃σi+m
σi+1 ∈ · |X̃σi

0 , d∞0 ) =

{

∫

qX̃σi
,x( · ) ν(dx) if dσi

= 1 ,
∫

qX̃σi
,x( · )R(X̃σi

,dx) if dσi
= 0 .
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Here we defined the transition kernel R(x,A)
def
= (1 − ε)−1{Qm(x,A) − ε ν(A)}

for x ∈ C, and (using that X is Polish to ensure existence) the regular conditional

probability qX0,Xm(A)
def
= Pη(Xm

1 ∈ A|X0,Xm).

The process (X̌n)n≥0 is not necessarily Markov. However, it is easily verified

that the law of the process (X̃n)n≥0 under P̌η is the same as the law of (Xn)n≥0

under Pη, so that our original Markov chain is indeed embedded in this construc-

tion. Moreover, at every time σn such that additionally dσn = 1, we have by

construction that X̃σn+m is drawn independently from the distribution ν, that

is, the process regenerates in m steps. Let us define the regeneration times as

σ̌0
def
= inf{σi + m : i ≥ 0, dσi

= 1}, σ̌n+1
def
= inf{σi + m : σi ≥ σ̌n, dσi

= 1}.

The regenerations will allow us to split the path of the process into one-dependent

blocks, to which we can apply classical large deviations bounds for independent

random variables. We formalize this as the following lemma.

Lemma 18. Define for i ≥ 0 the block sums

ξi
def
=

σ̌i+1−1
∑

k=σ̌i

{f(X̃k) − π(f)} .

Then (ξi)i≥0 are identically distributed, one-dependent, and Ěη(ξ0) = 0.

Proof. First, we note that P̌η(X̌
σ̌i+1−1
σ̌i

∈ · |X̌ σ̌i−m
0 ) = P̌ν(X̌ σ̌0−1

0 ∈ · ) for all

i. It follows directly that (ξi)i≥0 are identically distributed and one-dependent.

Moreover, as σ̌i is σ{X σ̌i−m
0 }-measurable, we find that the inter-regeneration

times (σ̌i+1−σ̌i)i≥0 are independent. Now note that, by the law of large numbers,Ěη(ξ0) = lim
n→∞

1

n

n−1
∑

i=0

ξi = lim
n→∞

1

n

σ̌n−1
∑

k=σ̌0

{f(X̃k) − π(f)} =

lim
n→∞

(

1

n

n−1
∑

i=0

{σ̌i+1 − σ̌i}
)





1

σ̌n − σ̌0

σ̌n−1
∑

k=σ̌0

{f(X̃k) − π(f)}



 .

But limn→∞
1
n

∑n−1
i=0 {σ̌i+1− σ̌i} = Ěη(σ̌1− σ̌0) < ∞ by the law of large numbers

and (18) below, while limn→∞
1

σ̌n−σ̌0

∑σ̌n−1
k=σ̌0

{f(X̃k) − π(f)} = 0 by the ergodic

theorem for Markov chains. This completes the proof. �

In the proof of Theorem 17, we will need that fact that the inter-regeneration

times σ̌0 and σ̌i+1 − σ̌i possess exponential moments. We presently establish

that this is necessarily the case, adapting the proof of [29, Theorem 2.1].

Proposition 19. There exists a constant K such thatĚη [exp (σ̌0/K)] ≤ K η(V ) and Ěη [exp ({σ̌1 − σ̌0}/K)] ≤ K (18)

for every probability measure η.
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Proof. We begin by writing

{σ̌0 − m = n} =
⋃

j≥0

{dσ0
, . . . , dσj−1

= 0, dσj
= 1, σj = n}.

Using the independence of dσj
from d0, . . . , dσj−1

, σj , we haveP̌η(σ̌0 − m = n) =

∞
∑

j=0

ε(1 − ε)j P̌η(σj = n|dσ0
, . . . , dσj−1

= 0).

In particular, we can writeĚη(eσ̌0/K) = em/K
∞
∑

j=0

ε(1 − ε)j Ěη(eσj/K |dσ0
, . . . , dσj−1

= 0).

Now note that by construction, we haveĚη(e{σj−σj−1−m}/K |X̌σj−1

0 ) = ĚR(X̃σj−1
, · )(eσ0/K) on {dσj−1

= 0}.

Define G(K)
def
= supx∈C ĚR(x, · )(eσ0/K). It is now easily established thatĚη(eσj/K |dσ0

, . . . , dσj−1
= 0) ≤ ejm/KG(K)j Ěη(eσ0/K).

We can therefore estimateĚη(eσ̌0/K) ≤ ε em/K Ěη(eσ0/K)

1 − (1 − ε) em/K G(K)
,

provided that (1 − ε) em/K G(K) < 1.

Now note that it follows from [27, Theorem 15.2.5] thatĚx(eσ0/K) ≤ K{λV (x) + b1C(x)} for all x ∈ X , (19)

provided K is chosen sufficiently large. Therefore, it is easily established thatĚη(eσ0/K) ≤ K η(V ) for K sufficiently large. On the other hand, by Jensen’s

inequality, G(K) ≤ G(β)β/K for β ≤ K. As G(β) < ∞ for some β by (19), we

have G(K) → 1 as K → ∞. Thus (1−ε) em/K G(K) < 1 for K sufficiently large,

and we have proved Ěη [exp (σ̌0/K)] ≤ K η(V ). To complete the proof, is suffices

to note that Ěη [exp ({σ̌1 − σ̌0}/K)] = Ěν [exp (σ̌0/K)] and ν(V ) < ∞. �

With these preliminaries out of the way, we now prove Theorem 17.

Proof Theorem 17. Define the sequence (ξℓ)ℓ≥0 as in Lemma 18. We begin by

splitting the sum Sn
def
=
∑n

i=0{f(Xi) − π(f)} into three different terms:

Sn =

σ̌0∧n
∑

j=1

{f(Xj) − π(f)} +

i(n)−1
∑

k=0

ξk +

n
∑

j=l(n)

{f(Xj) − π(f)} , (20)
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where i(n)
def
=
∑∞

k=0 1{σ̌k≤n} is the number of regenerations up to time n and

l(n)
def
= σ̌i(n) is the time of the last regeneration. Using (18), we haveP̌η





∣

∣

∣

∣

∣

∣

σ̌0∧n
∑

j=1

{f(Xj) − π(f)}

∣

∣

∣

∣

∣

∣

≥ t



 = P̌η [(σ̌0 ∧ n) ≥ t/2|f |∞]

≤ Ěη [exp(σ̌0/K)] exp

(

− t

2K|f |∞

)

≤ K η(V ) exp

(

− t

2K|f |∞

)

. (21)

This bounds the first term of (20). To bound the last term of (20), we proceed

as in the proof of [1, Lemma 3]. First note that, for any t > 0,P̌η [n − l(n) + 1 ≥ t] = P̌η [l(n) ≤ n + 1 − t] =

n
∑

ℓ=0

P̌η [σ̌ℓ ≤ n + 1 − t, i(n) = ℓ] =
n
∑

ℓ=0

P̌η [σ̌ℓ ≤ n + 1 − t, σ̌ℓ+1 > n] .

Recall that the inter-regeneration time σ̌ℓ+1− σ̌ℓ is independent from σ̌0, . . . , σ̌ℓ,

and (σ̌ℓ+1− σ̌ℓ)ℓ≥0 are identically distributed (see the proof of Lemma 18). ThusP̌η [σ̌ℓ ≤ n + 1 − t, σ̌ℓ+1 > n] =

⌊n+1−t⌋
∑

k=0

P̌η [σ̌ℓ = k, σ̌ℓ+1 − σ̌ℓ > n − k]

=

⌊n+1−t⌋
∑

k=0

P̌η [σ̌ℓ = k] P̌η [σ̌1 − σ̌0 > n − k] .

But as σ̌ℓ < σ̌ℓ+1 for any ℓ ≥ 0, we certainly have
∑n

ℓ=0 P̌η̌ [σ̌ℓ = k] ≤ 1 so thatP̌η [n − l(n) + 1 ≥ t] ≤
⌊n+1−t⌋
∑

k=0

P̌η [σ̌1 − σ̌0 > n − k] ≤
∞
∑

k=t

P̌η [σ̌1 − σ̌0 ≥ k]

≤ Ěη[exp({σ̌1 − σ̌0}/K)]

∞
∑

k=t

e−k/K ≤ Ke−t/K(1 − e−1/K)−1 .

We therefore find thatP̌η





∣

∣

∣

∣

∣

∣

n
∑

j=l(n)

{f(Xj) − π(f)}

∣

∣

∣

∣

∣

∣

≥ t



 ≤ P̌η [|n − l(n) + 1| ≥ t/2|f |∞]

≤ K exp

(

− t

2K|f |∞

)

. (22)

It remains to bound the middle term in (20). As i(n) ≤ n, we can estimate

∣

∣

∣

∣

∣

∣

i(n)−1
∑

k=0

ξk

∣

∣

∣

∣

∣

∣

≤ max
0≤j≤⌊n/2⌋

∣

∣

∣

∣

∣

j
∑

k=0

ξ2k

∣

∣

∣

∣

∣

+ max
0≤j≤⌊n/2⌋

∣

∣

∣

∣

∣

j
∑

k=0

ξ2k+1

∣

∣

∣

∣

∣

.



CONSISTENCY OF THE MLE IN HIDDEN MARKOV MODELS 33

Both terms on the right hand side of this expression are identically distributed.

We can therefore estimate using Etemadi’s inequality [5, Theorem 22.5]P̌η





∣

∣

∣

∣

∣

∣

i(n)−1
∑

k=0

ξk

∣

∣

∣

∣

∣

∣

≥ t



 ≤ 8 max
0≤j≤⌊n/2⌋

P̌η

[∣

∣

∣

∣

∣

j
∑

k=0

ξ2k

∣

∣

∣

∣

∣

≥ t/8

]

.

Note that |ξk| ≤ 2|f |∞(σ̌k+1 − σ̌k), so that using (18)

(2K|f |∞)2 Ěη

(

e|ξk|/2K|f |∞ − 1 − |ξk|
2K|f |∞

)

≤ 4K3|f |2∞ .

Using Bernstein’s inequality [30, Lemma 2.2.11], we obtainP̌η

[∣

∣

∣

∣

∣

j
∑

k=0

ξ2k

∣

∣

∣

∣

∣

≥ t/8

]

≤ 2 exp

(

− 1

K

t2

(j + 1)|f |2∞ + t|f |∞

)

.

We can therefore estimateP̌η





∣

∣

∣

∣

∣

∣

i(n)−1
∑

k=0

ξk

∣

∣

∣

∣

∣

∣

≥ t



 ≤ K exp

(

− 1

K

t2

n|f |2∞ + t|f |∞

)

. (23)

The proof is completed by combining (21), (22) and (23). �

5.3. Proof of Theorem 14.

Proof of Theorem 14. Assume without loss of generality that Ēθ[f(Y s
0 )] = 0. To

prove the result, it suffices to bound each term in the decomposition

n
∑

i=1

f(Y i+s
i ) =

s
∑

j=0

(

n
∑

i=1

ξi,j

)

+
n
∑

i=1

Eν
θ

(

f(Y i+s
i )

∣

∣Xi−1
0 , Y i−1

0

)

,

where we have defined for any 0 ≤ j ≤ s and i ≥ 1

ξi,j
def
= Eν

θ

(

f(Y i+s
i )

∣

∣Xi+j
0 , Y i+j

0

)

− Eν
θ

(

f(Y i+s
i )

∣

∣Xi+j−1
0 , Y i+j−1

0

)

.

By construction, (ξi,j)1≤i≤n are martingale increments for each j, and |ξi,j|∞ ≤
2|f |∞. Therefore, by the Azuma-Hoeffding inequality [32, p. 237], we have

Pν
θ

(∣

∣

∣

∣

∣

n
∑

i=1

ξi,j

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

− t2

8n|f |2∞

)

for each 0 ≤ j ≤ s. On the other hand, note that Eν
θ

(

f(Y i+s
i )

∣

∣Xi−1
0 , Y i−1

0

)

=

F (Xi−1) for all i, where F satisfies πθ(F ) = 0 (as we assumed Ēθ[f(Y s
0 )] = 0)

and |F |∞ ≤ |f |∞. The result therefore follows by applying Theorem 17. �
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