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LOCALLY STATIONARY LONG MEMORY ESTIMATION

FRANOIS ROUEFF AND RAINER VON SACHS

Abstract. Spectral analysis of strongly dependent time series data has a long history in
applications in a variety of fields, such as, e.g., telecommunication, meteorology, hydrology
or, more recently, financial and economical data analysis. There exists a wide literature
on parametrically or semi-parametrically modelling such processes using a long-memory
parameter d, including more recent work on wavelet estimation of d. As a generalization
of these latter approaches, in this work we allow the long-memory parameter d to be
varying over time. Hence, we give up the somewhat restrictive assumption of second-order
stationarity of the observed process (or its increments, respectively, after differencing a
finite number of times). We embed our approach into the framework of locally stationary
processes which, over the past decade, has been developed for weakly dependent time series
with a time-varying spectral structure. In this paper we adopt a semi-parametric approach
for estimating the time-varying parameter d in order to avoid fitting a parametric model,
such as ARFIMA, to the observed data. We show weak consistency and a central limit
theorem for our log-regression wavelet estimator of the time-dependent d in a Gaussian
context. Both simulations and a real data example complete our work on providing a fairly
general approach.

1. Introduction

There is a long tradition of modelling the phenomenon of long-range dependence in
observed data that show a strong persistence of their correlations by long-memory processes.
Such data can typically be found in the applied sciences such as hydrology, geophysics,
climatology and telecommunication (e.g. teletraffic data) but recently also in economics
and in finance, e.g. for modelling (realized) volatility of exchange rate data or stocks. The
literature on stationary long-memory processes is huge (see e.g. the references in the recent
survey paper [8]), and we concentrate here on the discussion of long-range dependence
resulting from a singularity of the spectral density at zero frequency - corresponding to a
slow, i.e. polynomial, decay of the autocorrelation of the data. Although a lot of (earlier)
work started from a parametric approach, using e.g. the celebrated ARFIMA-like models,
it occurs that since the seminal work by P. Robinson (see [16, 15]), the semi-parametric
approach is known to be more robust against model misspecification: instead of using a
parametric filter describing both the singularity of the spectral density at zero frequency
and the ARMA-dynamics of the short memory part, only the singular behavior of the
spectrum at zero is modelled by the long-memory parameter, d say, whereas the short
memory part remains completely non-parametric.

Driven by the empirical observation that the correlation structure of observed (weakly
or strongly dependent) data can change over time, there is a also a growing literature
on modelling departures from covariance-stationarity, mainly restricted to the short-range
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2 FRANOIS ROUEFF AND RAINER VON SACHS

dependent case. One prominent approach, that we adopt in this paper, too, is the model
of local stationarity, introduced by a series of papers by R. Dahlhaus ([4, 5, 3]): in a non-
parametric set-up, the spectral structure of the underlying stochastic process is allowed to
be smoothly varying over time. Of course, time-varying linear processes (of ARMA type)
arise as a subclass of these locally stationary processes. In order to come up with a rigorous
asymptotic theory of consistency and inference, the time-dependence of the spectral density
f(u, λ) of such locally stationary processes is modelled to be in rescaled time u ∈ [0, 1],
leading to a problem of non-parametric curve estimation: increasing the sample size T of
the observed time series does no more mean to look into the future but to dispose of more
and more observations to identify f(t/T, λ) locally around the “reference” rescaled time
point u ≈ t/T .

In the aforementioned spirit of semi-parametric modelling, and in contrast to the para-
metric approach of [2], one of the very few existing approaches on time-varying long-memory
modelling, we consider in this paper a locally stationary long-range dependent process with
a singularity in the spectral density at zero frequency which is parameterized by a time-
varying long-memory parameter d = d(u), u ∈ [0, 1], i.e. defined in rescaled time. Our
approach is a true generalization of the stationary approach in that the latter corresponds
to a time-constant d for our locally stationary model. As in the case of [12], the long mem-
ory parameter is estimated by a log-regression of a series of wavelet scalograms (estimated
wavelet variances per scale by summing the squared wavelet coefficients per scale over lo-
cation) onto a range of scales (corresponding to the low frequency range of the spectrum).
Although wavelets do not improve the estimation of d in the standard stationary context
−1/2 < d < 1/2, their use is of interest in various practical situations (presence of trends,
under and over-differenced series leading to d ≥ 1/2 and d ≤ −1/2 respectively), see details
in [8]. However, in our work now the challenge is to localize the estimation of the no more
constant parameter d. Wavelets are favorable in this situation since, in contrast to a Fourier
analysis, they are well localized both over time and frequency, i.e. scale. The localization
is achieved by smoothing over time the series of squared wavelet coefficients on each of
the coarse scales which enter into the log-regression, giving raise to a local scalogram. We
propose both a more traditional method based on two-sided kernels and also a recursive
scheme of one-sided smoothing weights, adapted to the end point of the observation period.

Let us compare our approach with the few existing prepublications on time-varying long
memory. A specific time-varying long memory stochastic volatility model has been treated
by [10]. They use the log linear relationship of the local variance of the maximum overlap
discrete wavelet transform and their scaling parameter, plus a localization with a rectangular
window in coefficient domain, to estimate the time-varying long memory parameter. As
mentioned already above, the work by [2] relies on a completely parametric approach for
the correlation structure of the observed locally stationary time series in that the filter in the
linear (although locally infinite) autoregressive representation of the process is completely
determined by a finite-dimensional parameter. The very recent work by [9] finally treats
two particular instances of long-memory processes with a non-constant memory parameter:
seasonal processes modelled to allow singularities in the spectral density at frequencies
different from zero, but using an approach with a piecewise constant long-memory parameter
d over time.

Summarizing our results, the rest of the paper is organized as follows. In Section 2, we
give the technical details of our locally stationary long memory model of semi-parametric
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type and give a series of examples of processes falling into this model. In Section 3 we define
our estimators based on wavelet analysis for which we briefly recall the wavelet set-up. We
define the local scalogram which is at the heart of our wavelet based estimators. We also
prepare our technique of stationary approximation by defining what we call the approxi-
mating stationary tangent process and its wavelet spectrum, the local wavelet spectrum, as
well as the pseudo-estimator tangent scalogram. We finish this section by discussing a series
of smoothing weights, one- and two-sided kernels, which fulfill our given assumptions. The
asymptotic properties of our proposed estimators are stated in the following Section 4. We
derive a mean-square approximation of the local scalogram through the tangent scalogram
(Proposition 1), followed by a control of the mean square error of the scalogram as an es-
timator of the local wavelet spectrum (Theorem 1) and a CLT for the tangent scalogram
(Theorem 2), which finally allows us to derive a CLT for the local scalogram (Corollary 1).
The results on the asymptotic behavior of the estimator of d(u) are then obtained: Corol-
lary 2 provides the rate of convergence and Theorem 3 the asymptotic normality. We pursue
the paper by Section 5 on numerical examples, first simulating some ARFIMA process with
a time-varying d and comparing the performance of the two-sided (triangular) kernel with
the recursive weight scheme. Second, we apply the kernel estimator to a series of realized
log volatilities (see also [17]), namely of the exchange rate of the YEN versus USD, from
June 1986 to September 2004. We conclude in Section 6 before an appendix section presents
all technical details of our derivations including our proofs.

2. Model set-up and examples

Define the difference operator [∆X]k = Xk −Xk−1 and ∆p recursively. This will allow
d(u) to take values up to p+ 1/2 in the following model.

We adapt the approach of [4] to the case where the spectral density is allowed to have a
singularity at the zero frequency. We define an array {Xt,T } of Gaussian random variables,
for a fixed p = 0, 1, 2, . . . ,

∆pXt,T =

∫ π

−π
A0

t,T (λ) eiλt dZ(λ) , t = 1, . . . T, T ≥ 1 , (1)

where dZ(λ) are the orthonormal increments of a Wiener process Z on [−π, π] and A0
t,T (λ)

is an array of L2([−π, π]) functions with real-valued Fourier coefficients. We further assume
that there exist a function A(u, λ) in L2([0, 1] × [−π, π]) and two constants c > 0 and
D < 1/2 such that

∣∣A0
t,T (λ) −A(t/T, λ)

∣∣ ≤ c T−1 |λ|−D , 1 ≤ t ≤ T, −π ≤ λ ≤ π , (2)

and

|A(u;λ) −A(v, λ)| ≤ c |v − u| |λ|−D , 0 ≤ u, v ≤ 1, −π ≤ λ ≤ π . (3)

These correspond to the definition of locally stationary processes introduced in [4] but with
the term |λ|−D added in the upper bound to allow a singularity at the zero frequency.

This gives rise to the following time-varying generalized spectral density of {Xt,T }

f(u, λ) = |1 − e−iλ|−2p |A(u;λ)|2 . (4)

Definition 1. We say that the process {Xt,T , t = 1, . . . , T, T ≥ 1} has local memory
parameter d(u) ∈ (−∞, p + 1/2) at time u ∈ [0, 1] if it satisfies (1), (2) and (3) and its
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generalized spectral density f(u, λ) defined by (4) satisfies the following semi-parametric
type condition:

f(u, λ) = |1 − e−iλ|−2d(u) f∗(u, λ) , (5)

with f∗(u, 0) > 0 and

|f∗(u, λ) − f∗(u, 0)| ≤ C f∗(u, 0) |λ|β , λ ∈ [−π, π] , (6)

where C > 0 and β ∈ (0, 2].

The following intuitive definition will be also useful when developing our estimation the-
ory using stationary approximations. For any u ∈ [0, 1] one may define a tangent stationary
process for the p-th increment

∆pXt(u) =

∫ π

−π
A(u;λ) eiλt dZ(λ) , (7)

whose spectral density is |1 − e−iλ|2pf(u, λ). Equivalently, we may write

∆pXt(u) =
∑

k∈Z

ak(u) εt−k , (8)

where {εt} are defined by

εt =
1√
2π

∫ π

−π
eiλt dZ(λ) ,

(and thus are i.i.d. ∼ N (0, 1)) and {ak(u), k ∈ Z} is the ℓ2 sequence defined by

A(u;λ) =
1√
2π

∑

k∈Z

ak(u) exp(−iλ k) .

A special case is to assume A0
t,T (λ) = A(t/T, λ) so that

∆pXt,T =

∫ π

−π
A(t/T ;λ) eiλt dZ(λ) , (9)

In this case {Xt,T } has locally stationary p-order increments with the following MA(∞)-
representation

∆pXt,T =
∑

k∈Z

ak(t/T ) εt−k . (10)

We now give a small series of examples, adapted from [12] to the time varying setting.

Example 1 (tvFBM(H)). The Fractional Brownian motion (FBM) process {BH(k)}k∈Z

with Hurst index H ∈ (0, 1) is a discrete-time version of {BH(t), t ∈ R}, a Gaussian process
with mean zero and covariance

E[BH(t)BH(s)] =
1

2

{
|t|2H + |s|2H − |t− s|2H

}
.

The spectral density of {∆BH(k)}k∈Z is then given by λ 7→ |1 − e−iλ|−2H+1fFBM(λ;H),
where

fFBM(λ;H) =

∣∣∣∣
2 sin(λ/2)

λ

∣∣∣∣
2H+1

+ |2 sin(λ/2)|2H+1
∑

k 6=0

|λ+ 2kπ|−2H−1 . (11)

The time varying Fractional Brownian motion (tvFBM) is defined by (9), (4) and (5) with
p = 1, d(u) = H(u)+1/2 ∈ (1/2, 3/2) and f∗(u, λ) = fFBM(λ;H(u)), where H is a Lipschitz
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mapping of [0, 1] into a subset of (0, 1). Then (6) holds with β = (2H(u) + 1) ∧ 2. The
corresponding non-negative local transfer function is

A(u, λ) = |1 − e−iλ|1/2−H(u)
√
fFBM(λ;H(u)) .

In this case, by Lemma 3 in the appendix, (3) holds for any D > supuH(u) − 1/2.

Example 2 (tvFGN(H)). The time varying fractional Gaussian noise (tvFGN) is defined
similarly as the tvFBM by f∗(u, λ) = fFBM(λ;H(u)) but with p = 0 and d(u) = H(u) −
1/2 ∈ (−1/2, 1/2).

Example 3 (tvARFIMA(0, d, 0)). If f∗(u;λ) = 1, then, for a given differentiation order
p ≥ 0, one may set

A(u;λ) = (1 − e−iλ)−d(u)+p ,

with d a Lipschitz function from [0, 1] to (−∞, p + 1/2). Lemma 3 yields (3) for any
D > supu d(u) − p. In this case the tangent process (8) is a fractionally integrated noise
(ARFIMA(0, d(u) − p, 0)) process, hence we call X a time varying fractionally integrated
noise (tvARFIMA(0, d, 0)) process.

Example 4 (tvARFIMA(q, d, r)). The time varying autoregressive fractionally integrated
moving average (tvARFIMA(q, d, r)) process is similar to the tvARFIMA(0, d, 0) but we
replace f∗(u;λ) = 1 by

f∗(u;λ) =
σ2(u)

2π

1 +
∑r

k=1 θk(u)e
−iλ

1 −∑r
k=1 φk(u)e−iλ

, (12)

where σ : [0, 1] → R+, φ = [φ1 . . . φq]
T : [0, 1] → R

q and θ = [θ1 . . . θr]
T : [0, 1] → R

r are
Lipschitz functions. The conditions (6) and (3) continue to hold with the same β = 2 and
the same D > supu d(u) − p, respectively.

In order to verify Condition (2) trivially, the simplest definition of {∆pXt,T } in all the
previous examples is to take A0

t,T (λ) = A(t/T, λ), that is to set (9), as will be done for our
simulated tvARFIMA in Section 5. However, one might also want to use a different transfer
function A0

t,T in (1), provided that Condition (2) holds. Such approximated tvMA(∞)

representation is motivated by the tvAR(p) process, which satisfies the recursion

Xt,T −
p∑

k=1

φk(t/T )Xt−k,T = σ(t/T ) ǫt, 1 ≤ t ≤ T ,

along with appropriate initial conditions. It has been shown in [4] that such non-stationary
process does not satisfy a representation of the form (9) (with p = 0) but it does satisfy (1)
and (2) (with p = D = 0).

3. Estimation method based on wavelet analysis

3.1. Discrete wavelet transform (DWT). Following the approach presented in [12] for
the estimation of the memory parameter of a stationary sequence, we compute the discrete
wavelet transform (DWT) of {Xt,T , 1 ≤ t ≤ T} (in discrete time) for a given scale function
φ and wavelet ψ. We denote by {Wj,k;T ; j ≥ 0, k ∈ Z} the wavelet coefficients of the process
{Xt,T , 1 ≤ t ≤ T},

Wj,k;T =

T∑

t=1

hj,2jk−tXt,T , k = 0, . . . , Tj − 1 , (13)
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where {hj,t, , t ∈ Z} denotes the wavelet detail filter at scale j associated to φ and ψ through
the relation

hj,t = 2−j/2

∫ ∞

−∞
φ(u+ t)ψ(2−ju) du ,

and Tj the number of available wavelet coefficients at scale j, which satisfies

T2−j − c ≤ Tj ≤ T2−j, for some constant c independent of j ≥ 0 . (14)

The filter hj,· and Tj are defined so that the support {t : hj,2jk−t 6= 0} is included in
{1, . . . T} for k = 0, . . . , Tj − 1. Observe that here j denotes the scale index of the wavelet
coefficient and k its position index. We use the convention that a large j corresponds to a
coarse scale. Let us define

Hj(λ) =
∑

t∈Z

hj,te
−itλ (15)

the corresponding filter transfer function. The following conditions on the wavelet ψ and
scale function φ are assumed to hold for a positive integer M and a real α.

(W-1) φ and ψ are compactly-supported, integrable,
∫∞
−∞ φ(t) dt = 1 and

∫∞
−∞ ψ2(t) dt =

1.
(W-2) There exists α > 1 such that supξ∈R |ψ̂(ξ)| (1+|ξ|)α <∞, where ψ̂(ξ) =

∫∞
−∞ ψ(t) e−iξtdt

denotes the Fourier transform of ψ.
(W-3) The function ψ hasM vanishing moments,

∫∞
−∞ tmψ(t) dt = 0 for allm = 0, . . . ,M−

1
(W-4) The function

∑
k∈Z

kmφ(·−k) is a polynomial of degree m for all m = 0, . . . ,M−1.

Under (W-3) and (W-4), the filter can be interpreted as the convolution of the ∆M filter
with a finite impulse response filter. Hence if M ≥ p, Equation (13) may be written as

Wj,k;T =

T∑

t=1

h̃j,2jk−t(∆
pX)t,T , k = 0, . . . , Tj − 1 ,

where hj,· = h̃j,· ∗∆p. In particular, we have

H̃j(λ) =
∑

t∈Z

h̃j,te
−itλ = Hj(λ)(1 − eiλ)−p . (16)

3.2. Local wavelet spectrum, local scalogram, tangent scalogram, and final esti-
mator. Recall that f(u, ·) in (4) can be interpreted as a local generalized spectral density
at rescaled time u ∈ [0, 1]. Hence, as in the stationary setting used in [12], for each such
u, we may define a local wavelet spectrum σ2(u) = {σ2

j (u), j ≥ 0}, where for each j ≥ 0,

σ2
j (u) is the variance of the wavelet coefficients at scale index j of a process with generalized

spectral density f(u, ·). This variance is well defined under the assumption M ≥ p because
in this case the wavelet coefficients at given scale are weakly stationary. Moreover, by (4)
and (16),

σ2
j (u) =

∫ π

−π
|Hj(λ)|2 f(u;λ) dλ =

∫ π

−π

∣∣∣H̃j(λ) A(u;λ)
∣∣∣
2

dλ .

One way to compute the wavelet spectrum is to use the tangent process ∆pXt(u) defined
in (7). We first define the wavelet coefficients of the tangent stationary process at any
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u ∈ [0, 1], namely,

Wj,k(u) =

T∑

t=1

h̃j,2jk−t(∆
pX)t(u) (17)

=

∫ π

−π
H̃j(λ) A(u;λ) eiλ2jk dZ(λ) , k = 0, . . . , Tj − 1 . (18)

these wavelet coefficients are indeed those of a process with generalized spectral density
f(u, ·). Thus the above definition gives

σ2
j (u) = E

[
W 2

j,k(u)
]
. (19)

An important tool for the estimation of the long memory is the scalogram (first introduced
in this context by [18] and developed by [1]) defined as

σ̂2
j = T−1

j

Tj−1∑

k=0

W 2
j,k .

Here to cope with local stationarity, we will need a local scalogram for estimating the local
wavelet spectrum, namely, for a given u ∈ [0, 1],

σ̂2
j,T (u) =

Tj−1∑

k=0

γj,T (k)W 2
j,k;T , (20)

where {γj,T (k)} are some non-negative weights localized at indices k ≈ uTj and normalized
in such a way that

Tj−1∑

k=0

γj,T (k) = 1 . (21)

The localization property will be expressed by imposing a bound on the increase rate of the
following quantity (see equation (30))

Γq(u; j, T ) =

Tj−1∑

k=0

|γj,T (k)| |k − Tu2−j |q , (22)

as T → ∞ for appropriate values of the exponent q.
An important tool for studying the local scalogram is the tangent scalogram defined as

σ̃2
j,T (u) =

Tj−1∑

k=0

γj,T (k)W 2
j,k(u) . (23)

We note that this definition is similar to that of the local scalogram in (20) but with
the wavelet coefficients Wj,k;T replaced by the tangent wavelet coefficients W 2

j,k(u) defined

in (17). The tangent scalogram is not an estimator since it cannot be computed from
the observations X1,T , . . . ,XT,T . However, it provides useful approximations of the local
scalogram.

We conclude this section by deriving an estimator of the time-varying long memory pa-
rameter. The local wavelet spectrum is related to the local memory parameter d(u) by the

asymptotic property σ2
j (u) ∼ c22d(u)j as j → ∞. This property will be made more precise

when we study the bias, see the relation (37) below. An estimator of d(u) is obtained by
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a linear regression of (log σ̂2
j,T (u))j=L,...,L+ℓ with respect to j = L, . . . , L+ ℓ, where ℓ is the

number of scales used in the regression and L is the lowest scale index used in the regression.
Let w be a vector w = [w0, . . . , wℓ]

T satisfying

ℓ∑

i=0

wi = 0 and 2 log(2)

ℓ∑

i=0

iwi = 1 . (24)

The local estimator of d(u) is defined as

d̂T (L) =
L+ℓ∑

j=L

wj−L log
(
σ̂2

j,T (u)
)
. (25)

3.3. Conditions on the weights γj,T (k) and examples. Let us now precise our condi-
tions on the weights γj,T (k). Denote, for any 0 ≤ i ≤ j, v ∈ {0, . . . , 2i − 1} and λ ∈ R,

Φj,T (λ; i, v) =
∑

l∈Tj(i,v)

γj−i,T (2il + v)eilλ , (26)

where
Tj(i, v) =

{
l : 0 ≤ l < 2−i(Tj−i − v)

}
. (27)

We moreover define
δj,T = sup

k=0,...,Tj−1
|γj,T (k)| . (28)

The weights γj,T (k) must satisfy an appropriate asymptotic behavior as T → ∞ for
obtaining a consistent estimator of d(u). More precisely, the following assumption will be
required.

Assumption 1. The index j depends on T so that the weights (γj,T (k))k satisfy the
following asymptotic properties as T → ∞.

(i) We have δj,T → 0, and for any fixed integer i, δj+i,T ∼ 2iδj,T .

(ii) For all i, i′ ≥ 0, v ∈ {0, . . . , 2i − 1} and v′ ∈ {0, . . . , 2i′ − 1}, there exists a constant
V = V (i, v; i′, v′) such that

δ−1
j,T

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ→ V (i, v; i′, v′) . (29)

(iii) For all η > 0, i ≥ 0 and v ∈ {0, . . . , 2i − 1}, we have

δ
−1/2
j,T sup

η≤|λ|≤π
|Φj,T (λ; i, v)| → 0 .

(iv) For q = 0, 1, 2, we have

Γq(u; j, T ) = O
(
(δj,T )−q

)
, (30)

where Γq(u; j, T ) is defined in (22).

We provide several examples of weights satisfying this assumption below. In these ex-
amples, the weights γj,T (k), k = 0, . . . , Tj , are entirely determined by Tj and a bandwidth
parameter bT and

δ−1
j,T ≍ bTTj ∼ bTT2−j . (31)

In kernel estimation, one may interpret the bandwidth parameter bT as the proportion of
wavelet coefficients used for the estimation of the local scalogram σ̂2

j,T (u) at given scale j
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and position u, among the Tj wavelet coefficients available at scale j from T observations
X1,T , . . . ,XT,T . Lemmas 4 and 5 show that, for these examples, Assumption 1 is satisfied
as soon as Tj → ∞ and bTTj → 0, except in the non-compactly supported case (K-3) in
Lemma 4 where we assume in addition that Tj exp(−c′bTTj) = O(1) for any c′ > 0, which

holds in the typical asymptotic setting bT ≍ T−ζ
j with ζ ∈ (0, 1).

Example 5 (Two-sided kernel weights). For u ∈ (0, 1), one has a number of observations
before rescaled time u and after rescaled time u both tending to infinity. Thus we may
use a two-sided kernel to localize the memory parameter estimator around u. For a given
bandwidth b = bT , the corresponding weights are given by

γj,T (k) = ρ−1
j,T K((uTj − k)/(bTTj)) , (32)

where K is a non-negative symmetric function and ρj,T is a normalizing term so that (21)
holds. In the last display we see that bT is the bandwidth in a rescaled time sense while
bTTj is the corresponding bandwidth in the sense of location indices k = 0, 1, 2, . . . , Tj at
scale j . Lemma 4 in the appendix shows that Assumption 1 holds for a wide variety of
choices for K.

Example 6 (Recursive weights). By recursive weights, we here mean that, given T, L and
w, the possibility of computing σ̂2

j,T (u) by successive simple linear processing involving a
finite number of operations after each new observations Xt;T as t grows from t = 1 to t = T .

Because the DWT is defined as a succession of finite filtering and decimation, it is indeed
possible to compute Wj,k;T online for all j ∈ {L, . . . , L + ℓ} and k ∈ {0, . . . , Tj}. Then an
online implementation of the local recursive scalogram can be done by setting

σ̂2
j,−1;T = 0 , j ∈ {L, . . . , L+ ℓ},

and, using the following recursive equation for all j ∈ {L, . . . , L+ ℓ} and t ∈ {0, . . . , Tj −1},

σ̂2
j,t;T = exp(−(bTTj)

−1) σ̂2
j,t−1;T +W 2

j,t;T ,

where (bTTj)
−1 is the exponential forgetting exponent corresponding to the bandwidth pa-

rameter bT . For any u ∈ (0, 1], we define a local recursive scalogram by

σ̂2
j;T (u) = ρ−1

j,T σ̂
2
j,[uTj ]−1;T ,

where [a] denotes the integer part of a and

ρj,T =

[u Tj ]−1∑

k=0

e−k/(bT Tj) =
1 − e−[u Tj ]/(bT Tj)

1 − e−(bT Tj)−1
. (33)

Hence (20) and (21) hold with

γj,T (k) = ρ−1
j,T e−([u Tj ]−1−k)/(bT Tj)1[0,uTj−1)(k) . (34)

Observe that these weights are one-sided by construction, since only the observations before
rescaled time u are used for estimating d(u). This is the reason why we may take u ∈ (0, 1].
Lemma 5 shows that Assumption 1 holds for these weights, provided that bT → 0 and
TjbT → ∞.
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4. Asymptotic properties

We study the asymptotic properties of d̂T (L) defined by (25) as L, T → ∞ in such a way
that Assumption 1 holds for each j = L,L+1, . . . , L+ ℓ and for the chosen weights γj,T (k).
We provide further conditions on L, T, δL,T under which consistency holds and derive the
corresponding rate of convergence (Corollary 2). Under strengthened conditions, we further

show that d̂T (L) is asymptotically normal (Theorem 3). These results essentially follow
from asymptotic results on the tangent scalogram (Theorem 2, Relations (37) and (58))
and approximation results on the local scalogram (Proposition 1) based on the tangent
scalogram.

4.1. Asymptotic properties of the local scalogram. In order to derive asymptotic
results for σ̂2

j,T (u), we first establish a bound on the error made when approximating σ̂2
j,T (u)

by σ̂2
j,T (u).

Proposition 1. Let u ∈ [0, 1]. Assume (W-1)–(W-4) hold with M ≥ p ∨ (d(u) − 1/2)
and α > 1/2 − d(u). Suppose moreover that Assumption 1 (iv) holds. Then, the following
approximation holds.

E

[(
σ̂2

j,T (u) − σ̃2
j,T (u)

)2]
= O

(
2(6+4p)jT−4δ−4

j,T + 2(3+2p+2d(u))jT−2δ−2
j,T

)
. (35)

Next, we derive a bound of the mean square error for estimating f∗(u, 0)κ(d(u)) 22jd(u)

using the estimator σ̂2
j,T (u), where κ is the function defined by

κ(d) =

∫ ∞

−∞
|ξ|−2d |ψ̂(ξ)|2 dξ , 1/2 − α < d < M + 1/2 . (36)

In fact as the estimator d̂T (L) is defined in (25) using σ̂2
j,T (u) with j = L+ i, i = 0, . . . , ℓ,

and as L, T → ∞, it will be convenient to normalize these quantities by 22Ld(u), so that
f∗(u, 0)κ(d(u)) 22jd(u)/22Ld(u) = f∗(u, 0)κ(d(u)) 22id(u) does not depend on L.

Theorem 1. Let u ∈ [0, 1]. Assume (W-1)–(W-4) hold with M ≥ p ∨ d(u) and α >
(1 + β)/2 − d(u). Then we have, as j → ∞,

σ2
j (u) = f∗(u, 0)κ(d(u)) 22jd(u)

{
1 +O

(
2−βj

)}
. (37)

Suppose moreover that Assumption 1 holds and that

2(3+2{p−d(u)})LT−2δ−2
L,T → 0 . (38)

Then we have for j = L+ i with i = 0, . . . , ℓ,

E

[
(2−2Ld(u)σ̂2

j,T (u) − f∗(u, 0)κ(d(u)) 22id(u))2
]

= O
(
δL,T + 2(3+2{p−d(u)})LT−2δ−2

L,T + 2−2βL
)

(39)

Using the approximation result stated in Proposition 1, we may also wish to obtain a
central limit theorem (CLT) for the local scalogram. To this end, we must first derive a
CLT for the tangent scalogram. Define, for any integer ℓ ≥ 0 and d ∈ (1/2 − α,M ] the



LOCALLY STATIONARY LONG MEMORY ESTIMATION 11

2ℓ-dimensional cross spectral density D∞,ℓ(λ; d) = [D∞,ℓ,v(d)]v=0,...,2ℓ−1 of the DWT of the
generalized fractional Brownian motion (see [12]) by

D∞,ℓ(λ; d) =
∑

l∈Z

|λ+ 2lπ|−2d eℓ(λ+ 2lπ) ψ̂(λ+ 2lπ)ψ̂(2−ℓ(λ+ 2lπ)) ,

where for all ξ ∈ R,

eℓ(ξ) = 2−ℓ/2 [1, e−i2−ℓξ, . . . , e−i(2ℓ−1)2−ℓξ]T .

In other words D∞,ℓ(λ; d) is a vector with entries

D∞,ℓ,v(λ; d) = 2−ℓ/2
∑

l∈Z

|λ+2lπ|−2d e−i v 2−ℓ(λ+2lπ) ψ̂(λ+ 2lπ)ψ̂(2−ℓ(λ+2lπ)), 0 ≤ v < 2ℓ .

We can now state the CLT for the tangent scalogram.

Theorem 2. Let u ∈ [0, 1]. Suppose that (W-1)–(W-4) hold with M ≥ p ∨ d(u), α >
1/2 − d(u) and that Assumption 1 (i)–(iii) holds. Then, for any ℓ ≥ 0, the following weak
convergence holds.

(
S̃L(u) − E

[
S̃L(u)

])
⇒ N (0, (f∗(u, 0))2Σ(u)) , (40)

where

S̃L(u) = 2−2Ld(u)δ
−1/2
L,T [σ̃2

L,T (u) σ̃2
L+1,T (u) . . . σ̃2

L+ℓ,T (u)]T . (41)

and Σ(u) is the (ℓ+ 1) × (ℓ+ 1) symmetric matrix defined by

Σi,i′(u) = 2 2{1+4d(u)}i
2i−i′−1∑

v=0

V (i− i′, v)

∫ π

−π

∣∣D∞,i−i′,v(λ; d(u))
∣∣2 dλ, 0 ≤ i′ ≤ i ≤ ℓ ,

(42)
with V (i− i′, v) = V (0, 0; i − i′, v) defined in (29).

Applying Proposition 1 and Theorem 2, we immediately get the following result.

Corollary 1. Let u ∈ [0, 1]. Assume (W-1)–(W-4) hold with M ≥ p∨d(u), α > 1/2−d(u).
Suppose moreover that Assumption 1 holds and

2(3+2{p−d(u)})LT−2δ−3
L,T → 0 . (43)

Then, for any ℓ ≥ 0, the following weak convergence holds.
(
ŜL(u) − E

[
ŜL(u)

])
⇒ N (0, (f∗(u, 0))2Σ(u)) , (44)

where

ŜL(u) = 2−2Ld(u)δ
−1/2
L,T [σ̂2

L,T (u) σ̂2
L+1,T (u) . . . σ̂2

L+ℓ,T (u)]T . (45)

and Σ(u) is the (ℓ+ 1) × (ℓ+ 1) symmetric matrix defined by (42).
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4.2. Asymptotic properties of the estimator d̂T (L). The following result establishes

the consistency of the estimator d̂T (L) defined in (25) with w = [w0, . . . , wℓ]
T fulfilling (24)

and provides a rate of convergence.

Corollary 2. Under the same assumptions as Theorem 1, if moreover L → ∞, then we
have

d̂T (L) = d(u) +Op

(
δ
1/2
L,T + 2(3/2+{p−d(u)})LT−1δ−1

L,T + 2−βL
)

= d(u) + op(1) . (46)

Let us determine the optimal rate of convergence of d̂T (L) towards d(u). By balancing

the three terms in the right-hand side of (46), we find that for 2L ≍ T 2/(3+6β−2d(u)+2p) and
bT ≍ (TLδL,T )−1 ≍ T (2d(u)−2p−2β−1)/(3+6β−2d(u)+2p) , these three terms are asymptotically
of the same order. Hence for this choice of the lowest scale L and the bandwidth bT (recall
that δ−1

L,T ≍ bTT2−L → ∞), we get

d̂T (L) = d(u) +Op

(
T−2β/(3+6β+2{p−d(u)})

)
.

We observe that the rate of convergence depends on the unknown parameter d(u). The
dependence in d(u) comes from the approximation result (35), which appears in (46) in the

term 2(3/2+{p−d(u)})LT−1δ−1
L,T . Other error terms in (46) have rates not depending on d(u),

which is consistent with the facts that 1) the rate of convergence does not depend on d in the
stationary case [12, Theorem 2], and 2) these two terms come from the tangent stationary
approximation. On the other hand, the term 2(3/2+{p−d(u)})LT−1δ−1

L,T may seem unusual
for estimating the time-varying parameter for local-stationary processes. For instance, for
a time-varying AR (tvAR) process with a Lipschitz-continuous parameter corresponding
to (2) with D = 0, the approximation error due to non-stationarity yields the error term
bT ≍ (TδL,T )−1. Indeed this corresponds to the term (nµ)−β with β = 1 in [11, Theorem 2]
which is shown to yield a rate optimal convergence in Theorem 4 of the same reference. Our
error term is always larger as it includes the additional multiplicative term 2(3/2+{p−d(u)})L

which tends to ∞ since p − d(u) > −1/2 and L → ∞. Although we cannot assert that
our rate is optimal, it can be explained as follows. In contrast to the tvAR process, our
setting is locally semi-parametric, which implies to let L tend to ∞ in order to capture the
low frequency behavior driven by the memory parameter d. It is thus reassuring that if L
were allowed to remain fix our error bound would be of the same order as for the locally
parametric setting. The fact that letting L → ∞ decreases the rate of convergence is not
surprising as the low frequency behavior implies large lags in the process, which naturally
worsens the quality of the local stationary approximations. To conclude this discussion, it is
interesting to note that the wavelet estimation of the memory parameter of a non-Gaussian
process may also yield a rate of convergence depending on the unknown parameter. It is
indeed the case for the infinite-source Poisson process, see [7, Remark 4.2].

We now state the asymptotic normality of the estimator, which mainly follows by applying
Proposition 1, Theorem 2, the bound (37) and the δ–method as in [13].

Theorem 3. Let u ∈ [0, 1]. Assume (W-1)–(W-4) hold with M ≥ p∨d(u), α > (1+β)/2−
d(u). Suppose moreover that Assumption 1 holds and

2(3+2{p−d(u)})LT−2δ−3
L,T → 0 and 2−2βLδ−1

L,T → 0 . (47)
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Then, the following weak convergence holds:

δ
−1/2
L,T (d̂T (L) − d(u)) ⇒ N (0,V(u)) , (48)

where d̂T (L) is defined by (25) and

V(u) =
1

κ2(d(u))

ℓ∑

i,i′=0

Σi,i′(u)2
−2(i+i′)d(u)wiwi′ .

with Σ(u) and κ(d(u)) defined by (42) and (36), respectively.

5. Numerical examples

We used a Daubechies wavelet withM = 2 vanishing moments and Fourier decay α = 1.34
(see [8]). Hence our asymptotic results hold for −0.84 < (1 + β)/2 − α < d(u) ≤ M = 2
(the left bound 0.84 corresponds to choose β arbitrarily small). In particular d(u) will be
allowed to take values beyond the unit root case (d(u) ≥ 1).

5.1. Simulated data. We simulate a T = 212-long sampleX1,T , . . . ,XT,T of a tvARFIMA(1,d,0)
process which has a local spectral density given by (12) with σ ≡ 1, φ1 ≡ 0.8 and

d(u) = (1 − cos(πu/2))/3, u ∈ [0, 1] .

The obtained simulated data is represented in Figure 1. We compute the local estimator

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6
Simulated ARFIMA process

Figure 1. A simulated tvARFIMA(1,d,0) of length T = 212.

σ̂2
j,T (u) defined in (20) with {γj,T (k)} given by the kernel weights on the one hand and the

recursive weights on the other hand, for j = 1, 2, . . . , 5 with a bandwidth bT = 0.25. For the
kernel weight we took the triangle kernel K(t) = (1−2|t|)+, which satisfies the assumptions
of Lemma 4(K-2). The obtained local scalograms σ̂2

j,T (u) of the local wavelet spectrum

σ2
j (u), j = 1, 2, . . . , 5, u ∈ [0, 1] are represented in the lower parts of Figures 2 and 3,

respectively, with a y-axis in a logarithmic scale. The five corresponding curves exhibit
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Kernel Estimator of the wavelet spectrum for 5 scales.

scales j=1 to j=3
scales j=2 to j=4
scales j=3 to j=5
true value

Figure 2. Local estimates as functions of u ∈ [0, 1] for the simulated

tvARFIMA(1,d,0) using a two-sided triangular kernel. Top: d̂T (L;u) us-
ing scales j = 1, 2, 3 to 3, 4, 5 (respectively in blue, green and red) and the
true value d(u) (in thin black). Bottom: σ̂2

j,T (u) for j = 1, . . . , 5.

different variabilities, the larger j, the larger the variability, which is in accordance with
our theoretical findings. On the top of these two figures, we represented the true parameter

d(u), u ∈ [0, 1] (plain black) and the corresponding estimators d̂T (u) for three sets of scales,
namely j = 1, 2, 3 (blue stars), j = 2, 3, 4 (green stars) and j = 3, 4, 5 (red stars), which
correspond to L = 1, 2, 3, respectively, and ℓ = 2 in the three sets of scales. One can observe
that the estimates are upper biased for L = 1, 2, while the estimates is varying more widely
for L = 3. Again this matches our theoretical findings. One can also observed the difference
between the two-side kernel estimator and the recursive estimator. The former exhibits a
uniform behavior along time with border effects close to each boundaries of the interval [0, 1]

(here we dropped the values of d̂T (u) for u < bT/2 and u > 1− bT/2 to avoid these border
effects). In contrast the latter exhibits a diminishing then stabilizing variability along time.
Thus it is better adapted for estimating the right part of the interval. It is interesting to note
that the choice of L is crucial for this simulated example. This is due to the presence of an
autoregressive component leading to a strong positive short-memory autocorrelation with
a root close to the unit circle. As a result d(u) is over estimated if a too high frequency
band of scales is used (as in the case L = 1). On the other hand this bias diminishes
drastically as soon as L ≥ 2. We made similar experiments for a tvARFIMA(0,d,0) process.
In this case, this bias is no longer observed for L = 1. We have also tried different values
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Figure 3. Same as Figure 2 using a recursive estimator.

of the bandwidth bT which also influences the bias and the variability of the estimates in
the expected way. Finally we tested our procedures on longer series to check the numerical
tractability. The computation of σ̂2

j,T (u) from X1,T , . . . ,XT,T , with T = 215 took less than
1 second for the kernel estimator and 7 seconds for the recursive estimator with a 3.00GHz
CPU. We note that the recursive version is about ten times slower than the kernel estimator.
On the other hand the recursive estimator is adapted to online computation, that is, σ̂2

j,T (t)
can be computed in a recursive fashion for each new available observation Xt,T .

5.2. Real data sets. We now use real data sets made of a sample of realized log volatility
of the YEN versus USD exchange rate between June 1986 and September 2004. The realized
log volatility is represented in Figure 4. The series length is T = 4470, that is of the same
order as the previously simulated series (T = 212 = 4096). Viewing the simulated data as
a benchmark, we used approximately the same bandwidth parameter bT = 0.23 and the
same sets of scales, namely L = 1, 2, 3 with ℓ = 3 in the three cases. The two-sided kernel
estimators of the memory parameter are represented in the upper part of Figure 5. As
previously we also display the corresponding local scalograms in the lower part of the same
figure. We omit the results for the recursive estimator as the non-uniform behavior along
time makes the results harder to interpret. One can observe that here as L increases the
estimates of d(u) globally increases which may indicate a lower bias at high frequencies. The
red curve also varies more widely than the two others, which indicates a poorer reliability.
The green curve appears as a good compromise as in the simulated example. It exhibits a
5 years periodic-like behavior, which seems to indicate that the long memory parameter is
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Figure 4. Realized log volatility of the YEN vs USD exchange rate from
June 1986 to September 2004.

not constant over time. This seems to be in accordance with the findings of [17] who model
long-memory realized volatilities by a change of the model parameters from one regime to
another where the different regimes can be explained by the influence of changing market
factors (such as the Asian financial crisis of 1998).

6. Conclusion

In this paper we have delivered a semi-parametric, hence fairly general, approach for
estimating the time-varying long-memory parameter d(u) of a locally stationary process
(or increment process if differencing is necessary beforehand). Apart from modelling the
singularity at zero frequency by the curve d(u), we do not need to model the time varying
spectrum of the remaining part explicitly. Using a wavelet log-regression estimator, already
shown to be well-performing in the stationary situation, continues to work well due to a
localization of the wavelet scalograms across time within each scale.

The development of our approach is based on a stationary approximation at each given
time point u. As in the stationary case, due to the generality of our semi-parametric spectral
density not to be depending on only a finite number of parameters (as in [2], e.g.), we need
to concentrate our attention to well estimating around frequency zero (where the amount of
the long-memory effect measured by d is visible). So a slightly subtle choice of considered
scales for the log-regression has to be done: asymptotically we need that our estimator
involves more and more frequencies (i.e. scales) but with a maximal frequency tending to
zero. In the wavelet domain, this means that the lowest scale used in the estimator will be
chosen so that i) the number of wavelet coefficients used in the estimator tends to infinity
and ii) this lowest scale itself tends (slowly) to infinity.

Simulations have shown that our estimator performs reasonably well beyond being at-
tractive from the point of view of asymptotic theory. In our real data analysis example, we
adopt the approach of [17] and of [6] to assume that realized volatilities of some exchange
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Figure 5. Same as Figure 2 for the YEN vs USD exchange rate realized log volatility.

rates follow a long-memory model. We make the interesting observation that for the ob-
served series the long-memory parameter can clearly not be considered to be constant over
time - which suggests that in explaining the persistent correlation in this exchange data
there are certainly periods of stronger persistence followed by periods of weaker persistence.
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“Communauté française de Belgique”, granted by the “Académie universitaire Louvain”.

We also thank S.-H. Wang and L. Bauwens for providing the data example of Section 5.2
and for their helpful comments related to this analysis.

Appendix A. Postponed proofs

of Proposition 1. By [12, Proposition 3], there is a constant C1 such that, for all j ≥ 0 and
all λ ∈ [−π, π],

|Hj(λ)| ≤ C3 2j/2 |2jλ|M (1 + 2j |λ|)−α−M . (49)

Applying (1), (7), (13) and (17), we get, for any u ∈ R, j ≥ 0 and k ∈ {0, . . . , Tj − 1},
Wj,k;T = Wj,k(u) +Rj,k(u;T ) , (50)
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where

Rj,k(u;T ) =

∫ π

−π

∑

s∈Z

h̃j,s

[
A0

2jk−s,T (λ) −A(u;λ)
]
eiλ(2jk−s) dZ(λ) .

The main approximation result consists in bounding

Sj(u;T ) =

Tj−1∑

k=0

γj,T (k)R2
j,k(u;T )

and

Dj(u;T ) =

Tj−1∑

k=0

γj,T (k)Wj,k(u)Rj,k(u;T ) .

In the following C denotes some multiplicative constant. Using (2), (3), and (60) in
Lemma 1, we have
∣∣∣∣∣
∑

s∈Z

h̃j,s

[
A0

2jk−s,T (λ) −A(u;λ)
]
eiλ(2jk−s)

∣∣∣∣∣ ≤ C 2jp |λ|−D
{

2j/2
∣∣2jk/T − u

∣∣+ 23j/2/T
}
.

Recall that D denotes an exponent less than 1/2 which appears in the Conditions (2)
and (3). Since D < 1/2, we get

E
[
R2

j,k(u;T )
]
≤ C 22jp 23j T−2

{
1 + (k − Tu2−j)2

}
.

Since we assumed α > 1/2−d(u), we can take D large enough so that 1−α−d(u) < D < 1/2
(by adapting the constant c appearing in the afore mentioned conditions). Hence we can
assume in the following that

M > d(u) − 1/2 and d(u) +D + α > 1 . (51)

By (18) we also obtain that

|E [Wj,k(u)Rj,k(u;T )]| ≤ C 2jp
{

2j/2
∣∣2jk/T − u

∣∣+ 23j/2/T
} ∫ π

−π

∣∣∣H̃j(λ)A(u;λ)
∣∣∣ |λ|−D dλ

Using (16), (4), (5), f∗(u, λ) ≤ Cf∗(u, 0) (by (6)), and (49), we further have
∫ π

−π

∣∣∣H̃j(λ)A(u;λ)
∣∣∣ |λ|−D dλ ≤ C

∫ π

−π
|Hj(λ)|

√
f(u, λ) |λ|−D dλ

≤ C
√
f∗(u, 0) 2j(d(u)+D−1/2) ,

where we used that
∫

R
|ξ|M−d(u)−D (1 + |ξ|)−α−Md(ξ) < ∞ by (51). The last displays

provide simple bounds for the expectations of Sj and Dj . To bound their variance, we rely
on the Gaussian assumption, which implies

Cov
(
R2

j,k(u;T ), R2
j,k′(u;T )

)
= 2Cov2

(
Rj,k(u;T ), Rj,k′(u;T )

)

and

Cov
(
Wj,k(u)Rj,k(u;T ),Wj,k′(u)Rj,k′(u;T )

)

= Cov
(
Wj,k(u),Wj,k′(u)

)
Cov

(
Rj,k(u;T ), Rj,k′(u;T )

)

+ Cov
(
Rj,k(u;T ),Wj,k′(u)

)
Cov

(
Wj,k(u), Rj,k′(u;T )

)
.
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Let us first provide bounds of E
[
Rj,k(u;T )Rj,k′(u;T )

]
and E

[
Wj,k(u)Rj,k′(u;T )

]
for

k, k′ = 0, . . . , Tj − 1. Proceeding as previously, under the condition (51), we get (in fact the
cases above k = k′ are particular cases)
∣∣E
[
Rj,k(u;T )Rj,k′(u;T )

]∣∣ ≤ C 22jp 23j T−2
{
1 + |k − Tu2−j |

}{
1 + |k′ − Tu2−j |

}
.

and
∣∣E
[
Wj,k(u)Rj,k′(u;T )

]∣∣ ≤ C 2jp
√
f∗(u; 0) 2j(d(u)+D−1/2)

{
2j/2

∣∣2jk′/T − u
∣∣+ 23j/2/T

}
.

We obtain the same bound for Var1/2 (Sj(u;T )) and E [Sj(u;T )] and thus, using the defini-
tion of Γ in (22),

∣∣E
[
S2

j (u;T )
]∣∣1/2 ≤ C 22jp 23j T−2 {Γ0(u; j, T ) + Γ2(u; j, T )} . (52)

For Dj(u;T ), we obtain

|E [Dj(u;T )]| ≤ C 2jp
√
f∗(u; 0) 2j(d(u)+D−1/2) 23j/2 T−1 {Γ0(u; j, T ) + Γ1(u; j, T )} .

Denote by Bj(u) the variance of the (stationary) process {Wj,k(u), k ∈ Z}. We then obtain

that Var1/2 (Dj(u;T )) is at most

C 2jp 23j/2 T−1 {Γ0(u; j, T ) + Γ1(u; j, T )}
{
B

1/2
j (u) +

√
f∗(u; 0) 2j(d(u)+D−1/2)

}
.

Observe that by [12, Theorem 1] we have, since M > d(u) − 1/2 and α > 1/2 − d(u),

Bj(u) ≤ C f∗(u; 0) 22d(u)j . Hence, since D < 1/2,
∣∣E
[
D2

j (u;T )
]∣∣1/2 ≤ C 2jp

√
f∗(u; 0) 2j(3/2+d(u)) T−1 {Γ0(u; j, T ) + Γ1(u; j, T )} . (53)

By (20) and (50), we have

σ̂2
j,T (u) = σ̃2

j,T (u) + Sj(u;T ) +Dj(u;T ) , (54)

where σ̃2
j,T (u) is defined in (23). The bound (35) now follows from (52), (53), (54) and

Assumption 1 (iv). �

of Theorem 2. The proof follows the lines of [13, Theorem 2], in which the stationary case
is considered, i.e. γj,T (u) = 1. We first observe that, for any µ = [µ0 . . . µℓ]

T ∈ R
ℓ+1, we

may write

µT S̃L(u) = ξT
L∆LξL ,

where ξL is a Gaussian vector with entries (WL+i,k(u))0≤i≤ℓ, 0≤k≤TL+i
and ∆L is the diagonal

matrix with diagonal entries
(
2−2Ld(u)δ

−1/2
L,T µiγL+i,T (u)

)

0≤i≤ℓ, 0≤k≤TL+i

. We may thus apply

[14, Lemma 12].
To obtain (40), it is thus sufficient to show that

ρ(∆L)ρ (Cov(ξL)) → 0 , (55)

where ρ(A) denotes the spectral radius of A, and

Cov(µT S̃L(u)) → (f∗(u, 0))2µT Σµ . (56)

We have, by (28) and Assumption 1(i),

ρ(∆L) ≤ 2−2Ld(u)δ
−1/2
L,T max

0≤i≤ℓ
|µi| max

0≤i≤ℓ
δL+i,T = o

(
2−2Ld(u)

)
.
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Using [13, Lemma 6], [14, Lemma 11] and that DL+i is the spectral density of the process
{WL+i,k(u), k ∈ Z}, we have

ρ (Cov(ξL)) ≤
ℓ∑

i=0

ρ (Cov([WL+i,k(u), k = 0, . . . , TL+i])) ≤ 2π

ℓ∑

i=0

‖DL+i‖∞ .

By [12, Theorem 1], since we assumed M ≥ d(u) and α > 1/2 − d(u), we have ‖DL+i‖∞ =

O(22Ld(u)). This with the last two displays implies (55).

We now compute the asymptotic covariance matrix of S̃L(u). Let 0 ≤ j′ ≤ j. Using (27)
and the Gaussian assumption, we have

Cov
(
σ̃2

j,T (u), σ̃2
j′,T (u)

)
=

Tj−1∑

k=0

Tj′−1∑

k′=0

γj,T (k)γj′,T (k′)Cov
(
W 2

j,k(u),W
2
j′,k′(u)

)

= 2

2j−j′−1∑

v=0

Tj−1∑

k=0

∑

l∈Tj(j−j′,v)

γj,T (k)γj′,T (l2j−j′ + v)Cov2
(
Wj,k(u),Wj′,l2j−j′+v(u)

)
.

Using [12, Corollary 1], we have

Cov
(
Wj,k(u),Wj′,l2j−j′+v(u)

)
=

∫ π

−π
Dj,j−j′,v(λ)eiλ(k−l) dλ ,

where Dj,j−j′ = [Dj,j−j′,v]v=0,...,2j−j′−1 denotes the 2j−j′-dimensional cross-spectral density

between Wj,k(u) and [Wj′,l2j−j′+v(u)]v=0,...,2j−j′−1. It follows from the last two displays

and (26) that

Cov
(
σ̃2

j,T (u), σ̃2
j′,T (u)

)
= 2

2j−j′−1∑

v=0

∫ π

−π
Φj,T (λ; 0, 0)Φj,T (λ; j − j′, v) D̃j,j−j′,v(λ) dλ ,

where

D̃j,j−j′,v(λ) =

∫ π

−π
Dj,j−j′,v(ξ)Dj,j−j′,v(ξ − λ)dξ .

By [12, Theorem 1(b)], since we assumed M ≥ d(u) and α > 1/2−d(u), using (6), we have,
for j = L+ i and j′ = L+ i′ with i′ ≤ i fixed,

‖2−2d(u)jDj,j−j′ − f∗(u, 0)D∞,i−i′(·; d(u))‖∞ → 0 .

The last three displays, (42), Lemma 2 and Assumption 1 yield

Cov
(
S̃L,T (u)

)
→ (f∗(u, 0))2Σ ,

and hence (56). �

of Theorem 1. By (19) and (21),

E
[
σ̃2

j,T (u)
]

= E
[
W 2

j,k(u)
]

= σ2
j (u) . (57)

Since the wavelet coefficients (17) are those of a stationary process, their behavior at large
scales (j → ∞) can be studied using [12, Theorem 1]. By [12, Theorem 1], since we assumed
(6) and M > d(u) − 1/2 and α > (1 + β)/2 − d(u), we obtain (37). In the following we
denote

K∗
u = f∗(u, 0)κ(d(u)) .
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We now provide a bound for

Var
(
σ̃2

j,T (u)
)

=

Tj−1∑

k,k′=0

γj,T (k)γj,T (k′)Cov
(
W 2

j,k(u),W
2
j,k′(u)

)

= 2

∫ π

−π
|Φj,T (λ; 0, 0)|2 D⋆2

j (λ) dλ ,

where Dj denotes the spectral density of the stationary Gaussian process {Wj,k , k ∈ Z},
Φj,T is defined in (26) and, for any (2π)-periodic function g, g⋆2 = g ⋆ g(λ) =

∫ π
−π g(λ −

ξ)g(ξ)dξ.
By [12, Theorem 1] we have, since M ≥ d(u) and α > 1/2 − d(u),

∫ π

−π
|Dj(λ)|2 dλ = O

(
24jd(u)

)
.

(the constants depend on f∗(u; 0) only). Using the last two displays and Assumption 1(ii)
with i = i′ = v = v′ = 0, we get that

Var
(
σ̃2

j,T (u)
)

= O(24jd(u)δj,T ) . (58)

Using (54) and (57), E

[
(σ̂2

j,T (u) −K∗
u 22jd(u))2

]
is at most

C
{
Var

(
σ̃2

j,T (u)
)

+ E
[
S2

j (u;T )
]
+ E

[
D2

j (u;T )
]}

+O
(
22(2d(u)−β)j

)

= O
(
24jd(u)δj,T + 2(6+4p)jT−4δ−4

j,T + 2(3+2p+2d(u))jT−2δ−2
j,T + 22(2d(u)−β)j

)
.

where we used (58), (52), (53) and (30). Using (38), the last display gives (39). �

of Theorem 3. We first show that

δ
−1/2
L,T


 2−2Ld(u)




σ̂2
L,T (u)

σ̂2
L+1,T (u)

...
σ̂2

L+ℓ,T (u)


−K∗

u




1

22d(u)

...

22ℓd(u)





⇒ N

(
0, (f∗(u, 0))2Σ(u)

)
. (59)

Observe that the weak convergence (59) is the same as (44) except for the centering term.
Relation (44) is valid since the assumptions of Corollary 1 hold. Applying δL,T → 0,
Proposition 1 and the left-hand side condition of (47), we have that, for any j = L+ i with
a fixed i = 0, . . . , ℓ,

δ
−1/2
L,T 2−2Ld(u)

E
[
σ̂2

j,T (u)
]

= δ
−1/2
L,T 2−2Ld(u)

E
[
σ̃2

j,T (u)
]
+ o(1) .

The bias control (37) and the right-hand side condition of (47) then imply

δ
−1/2
L,T 2−2Ld(u)

E
[
σ̂2

j,T (u)
]

= δ
−1/2
L,T f∗(u, 0)κ(d(u))22id(u) + o(1) .

This, with (44) gives the weak convergence (59) .
The convergence (48) now follows from (59) by applying the δ-method as in [13, Propo-

sition 3]. Indeed, define

g(x) =

ℓ∑

i=0

wi log(xi) for all x = [x0 . . . xℓ]
T .
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Observe that, by (24) and (25), we have

g
(
2−2Ld(u)[σ̂2

L,T (u) σ̂2
L+1,T (u) . . . σ̂2

L+ℓ,T (u)]T
)

= d̂T (L)

and

g
(
f∗(u, 0)κ(d(u))[1 22d(u) . . . 22ℓd(u)]T

)
= d(u) .

Thus (48) follows from (59) by computing the gradient of g at the centering term,

∇g
(
f∗(u, 0)κ(d(u))[1 22d(u) . . . 22ℓd(u)]T

)
=

[w0 w12
−2d(u) . . . wℓ2

−2ℓd(u)]T

f∗(u, 0)κ(d(u))
.

�

Appendix B. Technical lemmas

Lemma 1. Assume (W-1)–(W-4). Let hj,· the wavelet detail filter at scale index j and h̃j,·

any factorization of it by ∆p with p ∈ {0, . . . ,M}. Then we have
∑

s∈Z

|h̃j,s| ≤ C 2j(p+1/2) and
∑

s∈Z

(1 + |s|) |h̃j,s| ≤ C 2j(p+3/2) . (60)

Lemma 2. Suppose Assumption 1 holds. Let i, i′ ≥ 0, v ∈ {0, . . . , 2i − 1} and v′ ∈
{0, . . . , 2i′ − 1}. Define, for any (2π)-periodic function g,

IT (g) = δ−1
j,T

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) g(λ) dλ .

Then the two following assertions hold.

(i) If h→ g in L∞([−π, π]), then sup
T≥0

|IT (h) − IT (g)| → 0.

(ii) If g ∈ L∞([−π, π]) is continuous at zero, then, as T → ∞, IT (g) → V (i, v; i′, v′) g(0).

Proof. By linearity of IT , we may take g = 0 to prove Assertion (i). We have, by the
Cauchy-Schwarz inequality

|IT (h)| ≤ ‖h‖∞
[
δ
−1/2
j,T ‖Φj,T (·; i, v)‖2

] [
δ
−1/2
j,T ‖Φj,T (·; i′, v′)‖2

]
.

Using Assumption 1(ii), the terms between brackets are bounded independently of j and
we obtain (i).

We now prove (ii). By linearity of IT , we may assume g(0) = 1. By Assumption 1(ii),
we have IT (1) → V (i, v; i′, v′). On the other hand, we have, for any η > 0

|IT (g) − IT (1)| =
∣∣IT ((g − 1)1[−η,η] + (g − 1)1[−η,η]c)

∣∣

≤
∣∣IT ((g − 1)1[−η,η])

∣∣+
∣∣IT ((g − 1)1[−η,η]c)

∣∣ .
Observe that by continuity of g at the origin, ‖(g−1)1[−η,η]‖∞ → 0 as η → ∞. By (i), we get∣∣IT ((g − 1)1[−η,η])

∣∣→ 0 as η → ∞. It thus only remains to show that
∣∣IT ((g − 1)1[−η,η]c)

∣∣→
0 for any η > 0. This follows from the bound

∣∣IT ((g − 1)1[−η,η]c)
∣∣ ≤ ‖g−1‖1

[
δ
−1/2
j,T sup

η≤|λ|≤π
|Φj,T (λ; i, v)|

][
δ
−1/2
j,T sup

η≤|λ|≤π

∣∣Φj,T (λ; i′, v′)
∣∣
]
,

and by applying Assumption 1(iii). �
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Lemma 3. For any a > 0 and b > 0, there exists c > 0 such that

|zα − 1| ≤ c {1 + log(|z|)}α for all α ∈ [0, a], z ∈ C with |z| ≤ b .

Lemma 4. Assume one of the following.

(K-1) K = 1[−1/2,1/2].

(K-2) K is compactly supported and |K̂(ξ)| = o(|ξ|−3/2) as |ξ| → ∞, where K̂ denotes the
Fourier transform of K.

(K-3) K is integrable, K̂ has an exponential decay, i.e. for some c > 0, |K̂(ξ)| = O (exp(−c|ξ|))
as |ξ| → ∞, K(t) = O(|t|−p0) as |t| → ∞ for some p0 > 3, the derivative K ′ of K
satisfies |K ′(t)| = O(|t|−p1) as |t| → ∞ for some p1 > 1 and Tj exp(−c′bTTj) = O(1)
for any c′ > 0.

Suppose that bT → 0 and that j depends on T so that TjbT → ∞ as T → ∞. Then, for
weights given by (32), Assumption 1 is satisfied with

δj,T ∼ ‖K‖∞
‖K‖1

(bTTj)
−1 (61)

V (i, v; i′, v′) = 2π
‖K‖2

2

‖K‖1‖K‖∞
2−i−i′ , i, i′ ≥ 0, 0 ≤ v < 2i, 0 ≤ v′ < 2i′ . (62)

Proof. For convenience, we will omit the subscripts T and j,T in this proof section when
no ambiguity arises. Under (K-1), one has ρ = bTj + O(1). Under (K-2), K is uniformly
continuous on its compact support S and, since u ∈ (0, 1), b → 0 and Tjb → ∞, S eventually
falls between the extremal points of {(uTj − k)/(bTj), k = 0, . . . , Tj − 1}. Thus,

(bTj)
−1

Tj−1∑

k=0

K((uTj − k)/(bTj)) →
∫

S
K(s) ds = ‖K‖1 .

Under (K-3), using that |K ′(t)| ≤ c(1 + |t|)−p1 for some p1 > 1 and c > 0, we get

(bTj)
−1

Tj−1∑

k=0

K((uTj − k)/(bTj)) −
∫ u/b

(u−1)/b
K(s) ds = O


(bTj)

−2

Tj∑

l=0

(1 + l/(bTj))
−p1




= O
(
(bTj)

−1
)
.

Hence the last three displays yield that, in all cases,

ρj,T ∼ ‖K‖1(bTTj) . (63)

The asymptotic equivalence (61) then follows from the definitions (32) and (28), and we
obtain Assumption 1(i) by (14).

Let us now prove that Assumption 1(ii) holds under (K-1), (K-2) and (K-3), successively.
Note that, by definition of (26), we have
∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ = 2π

∑

l∈Tj(i,v)∩Tj (i′,v′)

γj−i,T (2il + v)γj−i′,T (2i′ l + v′) . (64)

Under (K-1), using 2−iTj−i ∼ 2−i′Tj−i′ ∼ Tj by (28), bTj → ∞ and b → 0, we easily get

that the supports of the sequences {γj−i,T (2il+ v), l ≥ 0} and {γj−i′,T (2i′ l+ v), l ≥ 0} are
eventually included in Tj(i, v) ∩ Tj(i

′, v′) and their intersection is of length asymptotically
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equivalent to bTj. Hence, using (64), (61) and (63) with ‖K‖1 = ‖K‖∞ = 1, we obtain
that, in this case,

δ−1

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ ∼ 2π

T 2
j

Tj−iTj−i′
.

By (14), this is Assumption 1(ii) with V (i, v; i′, v′) = 2π2−i−i′ which coincides with (62)
under (K-1).

Under (K-2), we proceed by interpreting the sum in (64) as a Riemann approximation of∫
K2 up to a normalization factor. For l ∈ Tj(i, v) ∩ Tj(i

′, v′), we approximate

Jl = (bTj)
−1ρj−i,Tρj−i′,Tγj−i,T (2il + v)γj−i′,T (2i′ l + v′)

= (bTj)
−1K({uTj−i − (2il + v)}/{bTj−i})K({uTj−i′ − (2i′ l + v′)}/{bTj−i′}) ,

by the local average

J̃l =

∫

Il

K2(s) ds ,

where Il is defined as the interval [{uTj − (l + 1)}/{bTj}, {uTj − l}/{bTj}]. Observe that

sup
s∈Il

∣∣s− {uTj−i − (2il + v)}/{bTj−i}
∣∣ ≤ 1

bTj
+

∣∣∣∣
1

bTj
− 2i

bTj−i

∣∣∣∣ |l−uTj |+u
|Tj−i − 2iTj |

bTj−i

|v|
bTj−i

.

Using (14), i, v = O(1) and l = O(Tj), we obtain, for any fixed integers i and v,

sup
0≤l≤2Tj

sup
s∈Il

∣∣s− {uTj−i − (2il + v)}/{bTj−i}
∣∣ = O((bTj)

−1) , (65)

and the same holds if i, v is replaced by i′, v′. Note that

Tj(i, v) ∩ Tj(i
′, v′) = {0, 1 . . . , {2−i(Tj−i − v)} ∧ {2−i′(Tj−i′ − v)} − 1} ,

which, by (14) and the fact that K is compactly supported, is eventually contained in

{0, 1, . . . , 2Tj} and eventually contains the set of l’s such that J̃l 6= 0, which is of size

O(bTj). By (65), we also see that, out of a set of length O(bTj), both Jl and J̃l vanish.
Hence we have ∑

l∈Tj(i,v)∩Tj(i′,v′)

∣∣∣Jl − J̃l

∣∣∣ = O

(
bTj sup

l
|Jl − J̃l|

)
.

Using (65) and the uniform continuity of K, there exists a constant c such that

sup
l

|Jl − J̃l| ≤ (bTj)
−1 sup

|s−t|,|s−t′|≤c/(bTj)

∣∣K2(s) −K(t)K(t′)
∣∣ = o((bTj)

−1) .

The last two displays, (64) and the definitions of Jl and J̃l thus yield

ρj−i,Tρj−i′,T

bTj

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ ∼ 2π

∫
K2(s) ds = 2π‖K‖2

2 . (66)

By (61) and (63), this gives Assumption 1(ii) with V (i, v; i′, v′) given by (62).
Under (K-3), we proceed similarly but we can no longer use that K has a compact

support. Instead we use that K is bounded and |K ′(t)| ≤ c′(3+ |t|)−p1 for some p1 > 1 and
c′ > 0 and thus, for any c > 0, as soon as (c+ 1)/(bTj) ≤ 1,

sup
s∈Il

sup
|t−s|,|t′−s|≤c/(bTj)

∣∣K2(s) −K(t)K(t′)
∣∣ ≤ c′′ (bTj)

−1(2 + |uTj − l|/(bTj))
−p .
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With (65) and since the length of Tj(i, v) ∩ Tj(i
′, v′) is O(Tj), we get

∑

l∈Tj(i,v)∩Tj(i′,v′)

∣∣∣Jl − J̃l

∣∣∣ = O


(bTj)

−2

Tj∑

k=0

(1 + k/(bTj))
−p


 = O

(
(bTj)

−1
)
.

Moreover
∑

l∈Tj(i,v)∩Tj (i′,v′)

J̃l =

∫ u/b

−u′/b
K2(s) ds→ ‖K‖2

2 ,

where u′ = [{2−i(Tj−i − v)} ∧ {2−i′(Tj−i′ − v′)}]/Tj − u → 1 − u by (14). This yields (66)
as in the previous case and thus the same conclusion holds.

Let us now show that Assumption 1 (iii) holds under (K-1), (K-2) and (K-3), successively.
Under (K-1), we have

|Φ(λ; i, v)| = ρ−1
j−i,T

∣∣∣∣∣

N∑

k=1

eikλ

∣∣∣∣∣ ,

where N = Nj,T denotes the number of l ∈ Tj(i, v) such that γj−i,T (2il + v) > 0. Since the
Dirichlet kernel satisfies

|DN (λ)| =

∣∣∣∣∣

N∑

k=1

eikλ

∣∣∣∣∣ =
∣∣∣∣
sin(λN/2)

sin(λ/2)

∣∣∣∣ ,

we observe that, for any η > 0, supN≥1 supλ∈[η,2π−η] |DN (λ)| < ∞. Hence, with (61)

and (63), we obtain Assumption 1 (iii).

Under (K-2) and (K-3), using that K(t) = (2π)−1
∫
K̂(ξ) eiξtdξ, we get

Φ(λ; i, v) = (2πρj−i,T )−1

∫ ∞

−∞
K̂(ξ) eiξ(uTji

−v)/(bTj−i)
∑

l∈T̃j(i,v)

eil(λ+2iξ/(bTj−i)) dξ ,

where T̃j(i, v) denotes the set of all l ∈ Tj(i, v) such that γj−i,T (2il + v) does not vanish.

Denote the length of T̃j(i, v) by N = Nj,T as in the previous case. We thus obtain

|Φ(λ; i, v)| ≤ (2πρj−i,T )−1

∫ ∞

−∞

∣∣∣K̂(ξ)
∣∣∣ |DN (λ+ 2iξ/(bTj−i))| dξ .

Let η > 0. Splitting the above integral as
∫∞
−∞ =

∫
2i|ξ|/(bTj−i)≤η/2 +

∫
2i|ξ|/(bTj−i)>η/2, we

obtain

sup
λ∈[η,π]

|Φ(λ; i, v)| ≤(2πρj−i,T )−1 sup
|λ|∈[η/2,π+η/2]

|DN (λ)|

+ (2πρj−i,T )−1‖DN‖∞
∫

2i|ξ|/(bTj−i)>η/2

∣∣∣K̂(ξ)
∣∣∣ dξ .

Now, we have, for η small enough, supN≥1 sup|λ|∈[η/2,π+η/2] |DN |(λ) < ∞, ‖DN‖∞ ≤ N

and, under (K-2), N = O(bTj) and
∫
2i|ξ|/(bTj−i)>η/2

∣∣∣K̂(ξ)
∣∣∣ dξ = o((bTj)

−1/2), which, with

the previous display, (61) and (63), implies Assumption 1 (iii). Under (K-3), the same

conclusion holds using that N = O(Tj),
∫
2i|ξ|/(bTj−i)>η/2

∣∣∣K̂(ξ)
∣∣∣ dξ = O(exp(−c2−i−1ηbTj))

and Tj exp(−c′bTj−i) = O(1) with c′ = c2−i−1η .
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Finally we show that Assumption 1 (iv) holds under (K-1), (K-2) and (K-3), successively.
Using the definition (22) and (14), we get, for some positive constant C,

Γq(u; j, T ) ≤ C
(bTj)

q

ρj,T

Tj−1∑

k=0

Kq((uTj − k)/(bTj)) +O(Γ0(u; j, T )) ,

where Kq(x) = K(x)|x|q. By definition of ρj,T , one has Γ0(u; j, T ) = O(1). Under (K-1) and
(K-2), Kq is bounded and compactly supported, so that

∑
k Kq((uTj −k)/(bTj)) = O(bTj).

This, with (63) and the previous display, implies (30) for all q ≥ 0. Hence, to conclude the
proof, it only remains to show that, for q = 1, 2, under (K-3),

Tj−1∑

k=0

Kq((uTj − k)/(bTj)) = O(bTj) .

Using that K(x) = O(|x|−p0) as x → ±∞, and q ≤ 2, we separate the sum
∑Tj−1

k=0 in∑
|uTj−k|≤bTj

for which Kq((uTj − k)/(bTj)) is O(1) and
∑

|uTj−k|>bTj
for which Kq((uTj −

k)/(bTj)) is O(|(uTj − k)/(bTj)|2−p0). Hence, we get

Tj−1∑

k=0

Kq((uTj − k)/(bTj)) = O (bTj) +O


bT p0−2

j

∑

l≥bTj−1

l2−p0


 .

Observing that bTj → ∞ and p0 > 3, we obtain the desired bound. �

Lemma 5. Suppose that bT → 0 and TjbT → ∞. Then, for weights given by (34),
Assumption 1 is satisfied with

δj,T ∼ (bTTj)
−1 (67)

V (i, v; i′, v′) = π 2−i−i′ , i, i′ ≥ 0, v ∈ {0, . . . , 2i − 1}, v′ ∈ {0, . . . , 2i′ − 1} . (68)

Proof. For convenience, we will omit the subscripts T and j,T in this proof when no ambiguity
arises. We set uj = [uTj ] in the following. Using (33), bTj → ∞, b → 0 and uj ∼ uTj , we
get that

ρ ∼ (bTj) . (69)

Observing that δ = γ(uj) = ρ−1, we get (67) and Assumption 1(i) follows.
Let us now show that Assumption 1(ii) holds. Using (64), we find that
∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ =

2π

ρj−i,Tρj−i′,T
exp

(
−uj−i + v + 1

bTj−i
− uj−i′ + v′ + 1

bTj−i′

)

×
N−1∑

l=0

el{2i/(bTj−i)+2i′/(bTj−i′ )} ,

where N = {2−i(uj−i − v)} ∧ {2−i′(uj−i′ − v′)}. Using (14), (69), bTj → ∞, b → 0 and
uj ∼ uTj, we obtain ρj−i,T ∼ 2i(bTj), (uj−i + v + 1)/(bTj−i) ∼ u/b, 2i/(bTj−i) ∼ 1/(bTj),
N2i/(bTj−i) ∼ u/b and similar result with i′, v′ replacing i, v. Using these asymptotic
equivalences and the previous display, we obtain

∫ π

−π
Φj,T (λ; i, v)Φj,T (λ; i′, v′) dλ ∼ 2π

2i+i′(bTj)2
A− o(1)

2/(bTj)
, (70)
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where

A = exp

(
−uj−i + v + 1

bTj−i
− uj−i′ + v′ + 1

bTj−i′
+N

{
2i

bTj−i
+

2i′

bTj−i′

})
.

Using (14), we have N = uTj + O(1) and uj−i + v + 1 = uTj2
i + O(1). Thus N2i −

(uj−i + v + 1) = O(1) and the same holds with i′, v′ replacing i, v. This implies that
A = exp

(
O
(
(bTj)

−1
))

→ 1. This, (70) and (67) yield Assumption 1(ii) with V (i, v; i′, v′)
defined by (68).

We finally show that Assumption 1(iii) holds. By setting N = 2−i(uj−i + v) and k =
N − 1 − l in (26), we obtain

|Φ(λ; i, v)| = ρ−1

∣∣∣∣∣

N−1∑

k=0

e−k{iλ+2i/(bTj−i)}

∣∣∣∣∣ ≤ ρ−1 1 + e−N2i/(bTj−i)

∣∣1 − e−iλ−2i/(bTj−i)
∣∣ .

Using that N2i/(bTj−i) ∼ b−1 → ∞, δ−1/2ρ−1 → 0 and that, for any η > 0, |1−z| does not

vanish on the compact set of complex numbers z = reiθ such that r ∈ [0, 1] and η ≤ |θ| ≤ π
and thus is lower bounded on this set, we obtain Assumption 1(iii).

Finally we show that Assumption 1 (iv) holds. By (14), we have, for any q ≥ 0,

Γq(u; j, T ) = ρ−1

uj−1∑

k=0

e−(uj−1−k)/(bTj)|uj − 1 − k|q +O (Γ0(u; j, T )) .

Observe that Γ0(u; j, T ) = 1. Setting l = uj − 1 − k, and separating the above sum over

l ≤ [qbTj]+1 for which we bound the exponential by 1 and l ≥ [qbTj]+2 so that e−x/(bTj)xq

is decreasing on x ≥ l − 1, we get

uj−1∑

k=0

e−(uj−1−k)/(bTj )|uj − 1 − k|q ≤
[bTj ]+1∑

l=0

lq +
∑

l≥[bTj ]+2

e−l/(bTj )lq

≤ O
(
(bTj)

q+1
)

+

∫

x≥[qbTj ]+1
e−x/(bTj)xqdx

= O
(
(bTj)

q+1
)
.

The last two displays, (69) and (67) yield (30), which achieves the proof. �
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[8] G. Faÿ, E. Moulines, F. Roueff, and M.S. Taqqu. Estimators of long-
memory: Fourier versus wavelets. J. of Econometrics, 2009. (In press,
DOI:10.1016/j.jeconom.2009.03.005).
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