Parallel geodesics and minimal stable length of random groups - Groupe INSA
Pré-Publication, Document De Travail Année : 2024

Parallel geodesics and minimal stable length of random groups

Résumé

We show that for any pair of long enough parallel geodesics in a random group G(m, d) with m generators at density d < 1/6, there is a van Kampen diagram having only one layer of faces. Using this result, we give an upper bound, depending only on d, of the number of pairwise parallel geodesics in G(m, d) when d < 1/6. As an application, we show that the minimal stable length of a random group at density d < 1/6 is exactly 1.
Fichier principal
Vignette du fichier
2410.07859v1.pdf (233.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04751962 , version 1 (24-10-2024)

Identifiants

Citer

Tsung-Hsuan Tsai. Parallel geodesics and minimal stable length of random groups. 2424. ⟨hal-04751962⟩
36 Consultations
4 Téléchargements

Altmetric

Partager

More