Benchmarking Blocking Algorithms for Web Entities - ETIS, équipe MIDI
Article Dans Une Revue IEEE Transactions on Big Data Année : 2020

Benchmarking Blocking Algorithms for Web Entities

Résumé

An increasing number of entities are described by interlinked data rather than documents on the Web. Entity Resolution (ER) aims to identify descriptions of the same real-world entity within one or across knowledge bases in the Web of data. To reduce the required number of pairwise comparisons among descriptions, ER methods typically perform a pre-processing step, called blocking, which places similar entity descriptions into blocks and thus only compare descriptions within the same block. We experimentally evaluate several blocking methods proposed for the Web of data using real datasets, whose characteristics significantly impact their effectiveness and efficiency. The proposed experimental evaluation framework allows us to better understand the characteristics of the missed matching entity descriptions and contrast them with ground truth obtained from different kinds of relatedness links.
Fichier principal
Vignette du fichier
benchmarking_blocking_algorithms_2017.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04319725 , version 1 (02-02-2024)

Identifiants

Citer

Vasilis Efthymiou, Kostas Stefanidis, Vassilis Christophides. Benchmarking Blocking Algorithms for Web Entities. IEEE Transactions on Big Data, 2020, 6 (2), pp.382-395. ⟨10.1109/TBDATA.2016.2576463⟩. ⟨hal-04319725⟩
110 Consultations
38 Téléchargements

Altmetric

Partager

More