Simultaneous Determination of Neutron-Induced Fission and Radiative Capture Cross Sections from Decay Probabilities Obtained with a Surrogate Reaction - Centre d'Etudes Nucléaires de Bordeaux Gradignan
Journal Articles Physical Review Letters Year : 2020

Simultaneous Determination of Neutron-Induced Fission and Radiative Capture Cross Sections from Decay Probabilities Obtained with a Surrogate Reaction

V. Méot
O. Bouland
  • Function : Author
P. Marini
A. Görgen
  • Function : Author
M. Guttormsen
  • Function : Author
S. Siem
  • Function : Author
F. Zeiser
  • Function : Author

Abstract

Reliable neutron-induced-reaction cross sections of unstable nuclei are essential for nuclear astrophysics and applications but their direct measurement is often impossible. The surrogate-reaction method is one of the most promising alternatives to access these cross sections. In this work, we successfully applied the surrogate-reaction method to infer for the first time both the neutron-induced fission and radiative capture cross sections of $^{239}$Pu in a consistent manner from a single measurement. This was achieved by combining simultaneously measured fission and γ-emission probabilities for the $^{240}$Pu($^4$He,$^4$He') surrogate reaction with a calculation of the angular-momentum and parity distributions populated in this reaction. While other experiments measure the probabilities for some selected γ-ray transitions, we measure the γ-emission probability. This enlarges the applicability of the surrogate-reaction method.

Keywords

Fichier principal
Vignette du fichier
2002.05439v2.pdf (151.7 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02497833 , version 1 (24-09-2024)

Identifiers

Cite

R. Pérez Sánchez, B. Jurado, V. Méot, O. Roig, M. Dupuis, et al.. Simultaneous Determination of Neutron-Induced Fission and Radiative Capture Cross Sections from Decay Probabilities Obtained with a Surrogate Reaction. Physical Review Letters, 2020, 125 (12), pp.122502. ⟨10.1103/PhysRevLett.125.122502⟩. ⟨hal-02497833⟩
125 View
4 Download

Altmetric

Share

More